Novel Cushing’s Syndrome Drug Improves Hypertension, Hyperglycemia

The investigational selective glucocorticoid receptor modulator relacorilant led to improvements in blood pressure, fasting glucose, and weight for patients with adrenal hypercortisolism, a pair of phase III studies showed.

In pooled data from the GRACE and GRADIENT trials, adults with adrenal hypercortisolism and hypertension on relacorilant had a significant decrease in systolic and diastolic blood pressure measured by 24-hour ambulatory blood pressure monitoring (-10.1 and -6.3 mm Hg, respectively) compared with placebo (1.5 and 2.2 mm Hg, respectively; both P<0.01), according to Corin Badiu, MD, PhD, of the Carol Davila University of Medicine and Pharmacy and National Institute of Endocrinology in Bucharest, Romania.

At week 22, relacorilant patients had an average blood pressure of 128/81 mm Hg compared with 135/84 mm Hg with placebo, Badiu reported at ENDO 2025, the annual meeting of the Endocrine Society.

As for those with hyperglycemia with or without hypertension at baseline, relacorilant significantly improved fasting glucose and glucose area under the curve (-0.7 and -2.4 mmol/L per hour, respectively) compared with placebo (0.4 and 1.3 mmol/L per hour, respectively; both P<0.05).

Relacorilant-treated participants also lost 4.1 kg (9 lb) compared with 1 kg (2.2 lb) in placebo patients (P<0.01).

“We expected a good hypertension control and an improved control of diabetes [with relacorilant],” Badiu told MedPage Today.

Acting as a selective cortisol modulator, relacorilant works by binding to the glucocorticoid receptor but not to other hormone receptors in the body. It was granted orphan drug designation by the FDA.

It works differently than other agents indicated for endogenous hypercortisolism (also known as Cushing’s syndrome) like the nonselective glucocorticoid receptor antagonist mifepristone (Korlym), which can be difficult to use given its drug-drug interactions and side effects like endometrial hypertrophy and vaginal bleeding.

If approved, relacorilant could be a treatment option for patients with mild autonomous hypercortisolism with resistant hypertension or difficult-to-treat diabetes who are avoiding or reluctant to surgery, or have had previous unsuccessful surgery, said Badiu.

Because metabolic issues are so prevalent in endogenous hypercortisolism, Badiu advised healthcare providers to take “an active attitude for screening for endogenous autonomous hypercortisolism in every individual patient with metabolic syndrome.”

After confirmation of an endogenous hypercortisolism diagnosis, providers should present all available treatment options from surgery to medical treatment in a personalized manner, using multidisciplinary management — cardiology, endocrinology, imaging, surgery, rheumatology, psychology, etc. — in order to make appropriate decisions, he recommended.

The GRACE and GRADIENT trials recruited participants ages 18 to 80 with endogenous hypercortisolism along with hypertension, hyperglycemia (defined as impaired glucose tolerance or diabetes), or both.

At baseline, patients given relacorilant had an average weight of 88.6 kg (195.3 lb) and waist circumference was 110.9 cm. Those with hypertension with or without hyperglycemia had average 24-hour systolic and diastolic blood pressures of 139.1 mm Hg and 86.4 mm Hg, respectively. For those with hyperglycemia with or without hypertension, average HbA1c was 6.5%, glucose area under the curve was 23.6 mmol/L per hour, and 2-hour oral glucose tolerance test was 11.8 mmol/L.

Participants on relacorilant had their dose titrated from 100 mg to 400 mg once daily based on tolerability and efficacy.

Treatment was safe and well-tolerated among patients, said Badiu, with no new emerging safety signal. Most adverse events were mild to moderate in severity.

As for adverse events of interest, there were no cases of relacorilant-induced irregular vaginal bleeding with endometrial hypertrophy or adrenal insufficiency, no events of relacorilant-induced QT prolongation, and no increases in cortisol concentrations and relacorilant-induced hypokalemia.

“Lack of hypokalemia as an adverse event was an additional positive finding,” said Badiu. “Some long-term effects on mood, sleep behavior, coagulation profile, bone metabolism, liver steatosis, and body composition are still subject to detailed analysis.”

Developer Corcept Therapeutics submitted a new drug application for relacorilant to the FDA late last year; a decision on approval is expected by the end of 2025. The drug is also currently being studied for ovarian, adrenal, and prostate cancers.

From https://www.medpagetoday.com/meetingcoverage/endo/116508

 

Double Synchronous Functional Pituitary Adenomas Causing Acromegaly and Subclinical Cushing Disease

Abstract

Double pituitary adenomas with growth hormone (GH) and adrenocorticotropic hormone (ACTH) secretion are very rare. They are responsible for acromegaly with hypercortisolism. Subclinical corticotropic adenomas are exceptional.
Herein, we report the case of a patient with double functional pituitary adenomas causing acromegaly and subclinical Cushing’s disease. A 45-year-old woman was referred to our Department for suspected acromegaly. Her past medical history included diabetes mellitus treated with oral antidiabetic drugs and hypertension.
On physical examination, she had a large prominent forehead, thickened lips, increased interdental spacing, prognathism, and enlarged hands and feet. No signs of hypercortisolism were found. Biological investigations showed an elevated insulin growth factor-1 (IGF-1) level at 555 ng/mL, a GH nadir after 75 g oral glucose tolerance test at 2 ng/mL, a morning cortisol level at 158 ng/mL, an ACTH level at 64 pg/mL, a thyroid stimulating hormone (TSH) level at 2.26 mIU/L, and a free thyroxine (FT4) level at 12.8 pmol/L. Cortisol level after low-dose dexamethasone suppression test was 86 ng/mL.
The diagnosis of acromegaly associated with Cushing’s disease was established. Pituitary magnetic resonance imaging showed a pituitary macroadenoma with no clear limits. The patient underwent transsphenoidal tumor resection. The pathological examination revealed two separate pituitary adenomas. The positivity to ACTH and GH was 100% and 80%, respectively.
This case emphasizes the necessity of an evaluation of all the pituitary axes in case of adenoma in order not to miss a double hormonal secretion or more even in the absence of suggestive clinical signs.

Ectopic ACTH-secreting Pheochromocytoma Without Typical Signs of Cushing Syndrome

Abstract

This case report describes a 42-year-old female with a rare pheochromocytoma presenting without classic Cushingoid features but with uncontrolled hypertension, type 2 diabetes, and recurrent headaches. Despite the absence of typical signs, biochemical analysis revealed elevated cortisol and ACTH levels, and imaging showed a 6 cm adrenal mass. The patient was stabilized preoperatively with alpha-blockers and metyrapone before undergoing a successful laparoscopic adrenalectomy. Histopathology confirmed pheochromocytoma with aggressive features. Postoperatively, her blood pressure and symptoms improved, and her cortisol levels normalized. This case underscores the diagnostic challenges of ACTH-secreting pheochromocytomas without classic hypercortisolism signs and emphasizes the need for thorough endocrine and imaging assessments. Surgical resection remains the definitive treatment, with long-term follow-up essential to monitor for recurrence. This case contributes to the limited literature on the coexistence of pheochromocytoma and ectopic ACTH secretion.

Introduction

Ectopic ACTH-dependent tumors are rare, comprising approximately 5%–10% of Cushing syndrome cases, and are infrequently associated with pheochromocytomas, making this a unique presentation [12]. Pheochromocytomas, though rare, can present as adrenal incidentalomas, often discovered during imaging for unrelated conditions. They represent 7% of adrenal incidentalomas and pose clinical challenges due to the risk of hormonal hypersecretion, including excess catecholamines and cortisol [1]. This case highlights the coexistence of an ectopic ACTH-producing tumor and pheochromocytoma, a combination rarely reported in the literature [34]. While Cushing syndrome typically arises from adrenal or pituitary sources, ectopic ACTH secretion from pheochromocytomas presents a diagnostic and therapeutic challenge due to its rarity and aggressive potential [4–6]. Early diagnosis is crucial, particularly in cases with comorbidities like hypertension and diabetes, which are common in pheochromocytomas [12]. This case underscores the need for a multidisciplinary approach to managing rare endocrine tumors.

Case report

A 42-year-old female from Mexico City presented with a history of treatment-resistant hypertension and a newly identified adrenal mass. She had no history of alcohol or tobacco use and led a generally healthy lifestyle. She was diagnosed with type 2 diabetes five years before symptoms appeared and developed hypertension five years before hospitalization, managed with valsartan and amlodipine verapamil.

The patient’s hypertension worsened, with blood pressure readings reaching 200/160 mmHg. She presented with asthenia and adynamia, and a CT scan revealed a 4 cm right adrenal mass, confirmed as 4.7 cm on a subsequent scan (Fig. 1). No signs of metastasis were observed. Upon hospital admission, her physical examination revealed a blood pressure of 95/84 mmHg, a heart rate of 95 beats per minute, a respiratory rate of 28 breaths per minute, and a systolic murmur. She exhibited no Cushingoid features.

 

The imaging identified a hyperdense area at the lower pole of the left kidney. A heterogeneous image was visualized in the right adrenal gland, characterized by a hypodense lesion measuring 40 × 47 × 43 mm, with a density of 36 Hounsfield units (HU) in the simple phase, 107 HU in the venous phase and 61 HU in the delayed phase (15 min), with an absolute washout of 64%.

Figure 1

The imaging identified a hyperdense area at the lower pole of the left kidney. A heterogeneous image was visualized in the right adrenal gland, characterized by a hypodense lesion measuring 40 × 47 × 43 mm, with a density of 36 Hounsfield units (HU) in the simple phase, 107 HU in the venous phase and 61 HU in the delayed phase (15 min), with an absolute washout of 64%.

Initial laboratory tests showed elevated white blood cells (11 000/mm3), hemoglobin of 12.5 g/dl, and platelet count of 305 000/mm3. Blood chemistry indicated hyperglycemia (132 mg/dl), hyponatremia (129 mEq/l), and hypokalemia (3.4 mEq/l). Cortisol levels were elevated at 31.53 μg/dl, and a 1 mg low-dose dexamethasone suppression test showed cortisol levels of 16.65 μg/dl and 14.63 μg/dl, suggesting ACTH-dependent Cushing syndrome.

ACTH levels were 24 pg/ml, which, while elevated, were not suppressed. However, elevated 24-h urinary metanephrines (9881 μg/24 h) confirmed the presence of pheochromocytoma. The patient’s aldosterone-to-renin ratio was measured, revealing a ratio of 4. The serum aldosterone level was 5 ng/dl (138 pmol/l), while plasma renin activity was recorded at 1.1 ng/ml/h.

Imaging revealed a 4.7 cm right adrenal mass with a density of 36 Hounsfield Units and an absolute washout of 64%, with no signs of malignancy (Fig. 1).

The patient’s hypertension was initially managed with prazosin and metoprolol, but her blood pressure spiked to 200/160 mmHg during a hypertensive crisis, requiring nitroprusside. Surgical intervention was planned after diagnosis was confirmed.

The patient underwent a successful laparoscopic right adrenalectomy. The tumor measured 6 cm, and histopathology confirmed a pheochromocytoma with a PASS score of 4, indicating potential for aggressive behavior (Table 1). Histological and immunohistochemical analysis revealed the tumor’s characteristic organoid pattern (Zellballen) with chromogranin and synaptophysin positivity in principal cells and S100 protein staining in sustentacular cells, consistent with pheochromocytoma (Fig. 2). Postoperatively, her blood pressure stabilized, and symptoms of palpitations and sweating resolved. She has weaned off antihypertensives, and a follow-up dexamethasone suppression test showed a significant reduction in cortisol levels (1.2 μg/dl), indicating successful tumor removal.

 

Table 1

Histopathological report.

HISTOPATHOLOGICAL DIAGNOSIS
Specimen from right adrenalectomy:
Pheochromocytoma measuring 6×6 cm (positive for chromogranin 7, synaptophysin +S100, with sustentacular cells staining positive)

  • Marked nuclear pleomorphism: 1 point
  • Diffuse growth pattern: 2 points
  • Capsular invasion: 1 point
Total: 4 points.
Tumors with a score greater than 4 may exhibit aggressive biological behavior.

 

Histological and microscopic findings of adrenal Pheochromocytoma. (A) Macroscopic appearance. The ovoid tissue specimen has a light, smooth, soft external surface. The cut surface reveals a dark inner surface with light and hemorrhagic areas. Two cystic lesions with smooth walls are observed in the center (gross view). (B) A well-demarcated hypercellular lesion with an organoid pattern (Zellballen), separated by thin fibrovascular septa (Hematoxylin and eosin stain, 40×). (C) Nest of polygonal principal cells with ample eosinophilic granular cytoplasm, well-defined plasma membranes, hyperchromatic nuclei, and mild nuclear pleomorphism. Adjacent to the principal cells are spindle-shaped sustentacular cells with eosinophilic cytoplasm (Hematoxylin and eosin stain, 400×). (D) Positive immunoreactivity for chromogranin in principal cells. (E) Intense cytoplasmic reaction for synaptophysin in principal cells (immunohistochemistry, 400×). (F) Positive immunoreactivity for S100 protein, showing nuclear and cytoplasmic staining in sustentacular cells (immunohistochemistry, 400×).

Figure 2

Histological and microscopic findings of adrenal Pheochromocytoma. (A) Macroscopic appearance. The ovoid tissue specimen has a light, smooth, soft external surface. The cut surface reveals a dark inner surface with light and hemorrhagic areas. Two cystic lesions with smooth walls are observed in the center (gross view). (B) A well-demarcated hypercellular lesion with an organoid pattern (Zellballen), separated by thin fibrovascular septa (Hematoxylin and eosin stain, 40×). (C) Nest of polygonal principal cells with ample eosinophilic granular cytoplasm, well-defined plasma membranes, hyperchromatic nuclei, and mild nuclear pleomorphism. Adjacent to the principal cells are spindle-shaped sustentacular cells with eosinophilic cytoplasm (Hematoxylin and eosin stain, 400×). (D) Positive immunoreactivity for chromogranin in principal cells. (E) Intense cytoplasmic reaction for synaptophysin in principal cells (immunohistochemistry, 400×). (F) Positive immunoreactivity for S100 protein, showing nuclear and cytoplasmic staining in sustentacular cells (immunohistochemistry, 400×).

Postoperatively, her course was uneventful, with stable blood pressure without antihypertensives. A follow-up evaluation revealed normal cortisol levels, and 24-h urinary metanephrines returned to normal (312 μg/24 h for metanephrines; 225 μg/24 h for normetanephrines). Repeat imaging showed no residual adrenal mass. At her most recent follow-up, the patient remained asymptomatic with normal laboratory values, and no recurrence has been detected.

Discussion

Ectopic ACTH-secreting pheochromocytomas are rare, accounting for a small percentage of ACTH-dependent Cushing syndrome cases [14–6]. These tumors present diagnostic challenges, mainly when typical signs of Cushing syndrome, such as moon face, abdominal striae, or muscle weakness, are absent [3]. In this case, the patient exhibited only diabetes, uncontrolled hypertension, and recurrent headaches, symptoms that can also be attributed to pheochromocytoma itself [1]. The absence of Cushingoid features delayed the identification of ectopic ACTH secretion, making this case particularly difficult and unusual.

According to Gabi JN et al., most patients with ACTH-secreting pheochromocytomas present with severe hypercortisolism, including rapid weight gain and characteristic facial changes [3]. The absence of such features in this patient highlights the need to consider ectopic ACTH secretion in cases of adrenal masses, even without typical Cushing syndrome symptoms. This case illustrates how subtle presentations can lead to delayed diagnoses, emphasizing the importance of thorough evaluation in patients with adrenal tumors and metabolic abnormalities [13].

The diagnostic approach for pheochromocytomas includes hormonal assays and imaging [78]. Preoperative management for pheochromocytomas typically includes alpha-blockers to manage catecholamine excess [478]. This patient was managed with prazosin for blood pressure control and metyrapone to suppress cortisol production, consistent with clinical guidelines for managing ACTH-secreting tumors [578]. Despite the absence of Cushingoid features, careful preoperative preparation was essential to prevent complications during surgery.

Surgical resection is the definitive treatment for pheochromocytomas, particularly those secreting ACTH [8]. In this case, the patient underwent a successful laparoscopic adrenalectomy with no intraoperative complications. Histopathology confirmed a pheochromocytoma with marked nuclear pleomorphism and capsular invasion, suggesting potential aggressive behavior. Postoperatively, the patient’s blood pressure normalized, and her diabetes improved, aligning with outcomes reported in similar cases [46]. Cortisol levels also returned to normal, demonstrating the effectiveness of adrenalectomy in resolving hypercortisolism.

A limitation in this case was the delayed recognition of ectopic ACTH secretion due to the absence of typical Cushingoid signs. The literature underscores the importance of considering this diagnosis, even in nonspecific cases [5].

Long-term management of pheochromocytomas, particularly those with aggressive features like capsular invasion, requires close follow-up [578]. Genetic testing should be considered, especially in patients with unusual presentations or family histories of endocrine disorders [15]. Although not performed in this case, genetic testing could have provided further insight into the tumor’s etiology.

Acknowledgements

We thank the radiology department for interpreting the CT.

Conflict of interest

The authors declare no conflicts of interest related to this case report.

Funding

No external funding was received for this study.

Ethical approval

No approval was required.

Consent

Written informed consent was obtained from the patient and her parents to publish this case report and any accompanying images.

Guarantor

Froylan D. Martinez-Sanchez is the guarantor for this publication and accepts full responsibility for the work.

© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Thin Skin in Cushing’s Syndrome

Abstract

A 53-year-old woman with a history of metastatic small-cell lung cancer was evaluated during an inpatient admission for Cushing’s syndrome on the basis of new findings of hypertension, hypokalemia, hyperglycemia, and metabolic alkalosis.
A focused physical examination was performed to assess for the antianabolic effects of excess cortisol. The thickness of the skin on the back of her third finger was 1.2 mm (reference value, >1.8) when measured with skin calipers (Panels A and B). Thin skin — a clinical sign strongly suggestive of hypercortisolism — results from inhibition of collagen synthesis by glucocorticoids.
To avoid interference from subcutaneous fat, skin thickness should be measured on the backs of the fingers. The measurement can be done with skin calipers (see Video 1) or electrocardiogram calipers (see Video 2). Levels of random plasma cortisol, midnight plasma cortisol, 24-hour urine cortisol, and corticotropin were elevated.
Magnetic resonance imaging of the brain showed no pituitary abnormalities. Whole-body restaging imaging showed new metastatic lesions in the lungs, bones, liver, and meninges. A diagnosis of Cushing’s syndrome — presumed to be paraneoplastic — was made.
After discussing her prognosis with her physicians, the patient opted for palliative care and died 1 week later.

Sterotherapeutics begins Phase II trial for ST-002 targeting Cushing’s Syndrome

US-based clinical-stage company Sterotherapeutics has announced the commencement of a Phase II clinical trial for its drug candidate, ST-002, for treating Cushing’s Syndrome, a rare endocrine disorder.

The trial will assess the drug’s efficacy, tolerability, and safety in individuals with this condition. It is set to be conducted in several European clinical sites.

Sterotherapeutics CEO Manohar Katakam said: “After extensive preparations and based on a large body of scientific data, we are excited to convene this important Investigator Meeting as we progress to the next stage of our clinical development programme.

“This trial represents a significant step forward in our mission to develop transformative therapies for unmet medical needs. Collaboration with our expert investigators is essential to ensuring the highest standards of scientific rigour and patient safety.”

An orphan drug designation was granted by the US Food and Drug Administration (FDA) to the drug underscoring the requirement for new treatments alternatives for this rare condition.

Through this designation, Sterotherapeutics is eligible for various development incentives. These include assistance in the drug development process, certain FDA fee exemptions, post-approval marketing exclusivity of seven years, and tax credits for clinical expenses.

Characterised by longer exposure to high cortisol levels, Cushing’s Syndrome is stated to result in serious health complications like diabetes, osteoporosis, and hypertension.

Sterotherapeutics concentrates on the orphan diseases therapy development. The company stated that its leading programmes, ST-002 for Cushing’s Syndrome and ST-003 for primary sclerosing cholangitis, have shown promise in prior animal and human studies. ST-003 has also been granted an orphan drug designation by the US regulator.

From https://www.clinicaltrialsarena.com/news/sterotherapeutics-trial-st-002/?cf-view&cf-closed