Synergistic Cortisol Suppression by Ketoconazole–Osilodrostat Combination Therapy

Abstract

Summary

Here, we describe a case of a patient presenting with adrenocorticotrophic hormone-independent Cushing’s syndrome in a context of primary bilateral macronodular adrenocortical hyperplasia. While initial levels of cortisol were not very high, we could not manage to control hypercortisolism with ketoconazole monotherapy, and could not increase the dose due to side effects. The same result was observed with another steroidogenesis inhibitor, osilodrostat. The patient was finally successfully treated with a well-tolerated synergitic combination of ketoconazole and osilodrostat. We believe this case provides timely and original insights to physicians, who should be aware that this strategy could be considered for any patients with uncontrolled hypercortisolism and delayed or unsuccessful surgery, especially in the context of the COVID-19 pandemic.

Learning points

  • Ketoconazole–osilodrostat combination therapy appears to be a safe, efficient and well-tolerated strategy to supress cortisol levels in Cushing syndrome.
  • Ketoconazole and osilodrostat appear to act in a synergistic manner.
  • This strategy could be considered for any patient with uncontrolled hypercortisolism and delayed or unsuccessful surgery, especially in the context of the COVID-19 pandemic.
  • Considering the current cost of newly-released drugs, such a strategy could lower the financial costs for patients and/or society.

Background

Untreated or inadequately treated Cushing’s syndrome (CS) is a morbid condition leading to numerous complications. The latter ultimately results in an increased mortality that is mainly due to cardiovascular events and infections. The goal of the treatment with steroidogenesis inhibitors is normalization of cortisol production allowing the improvement of comorbidities (1). Most studies dealing with currently available steroidogenesis inhibitors used as monotherapy reported an overall antisecretory efficacy of roughly 50% in CS. Steroidogenesis inhibitors can be combined to better control hypercortisolism. To the best of our knowledge, we report here for the first time a patient treated with a ketoconazole–osilodrostat combination therapy.

Case presentation

Here, we report the case of Mr D.M., 53-years old, diagnosed with adrenocorticotrophic hormone (ACTH)-independent CS 6 months earlier. At diagnosis, he presented with resistant hypertension, hypokalemia, diabetes mellitus, easy bruising, purple abdominal striae and major oedema of the lower limbs.

Investigations

A biological assessment was performed, and the serum cortisol levels are depicted in Table 1. ACTH levels were suppressed (mean levels 1 pg/mL). Mean late-night salivary cortisol showed a four-fold increase (Table 2), and mean 24 h-urinary cortisol showed a two-fold increase. Serum cortisol was 1000 nmol/L at 08:00 h after 1 mg dexamethasone dose at 23:00 h. The rest of the adrenal hormonal workup was within normal ranges (aldosterone: 275 pmol/L and renin: 15 mIU/L). An adrenal CT was performed (Fig. 1) and exhibited a 70-mm left adrenal mass (spontaneous density: 5 HU and relative washout: 65%) and a 45-mm right adrenal mass (spontaneous density: −2 HU and relative washout: 75%). The case was discussed in a multidisciplinary team meeting, which advised to perform 18F-FDG PET-CT and 123I-Iodocholesterol scintigraphy before considering surgery. A genetic screening was performed, testing for ARMC5 and PRKAR1A pathogenic variants.

Figure 1View Full Size
Figure 1
Adrenal CT depicting the bilateral macronodular adrenocortical hyperplasia.

Citation: Endocrinology, Diabetes & Metabolism Case Reports 2021, 1; 10.1530/EDM-21-0071

Table 1Serum cortisol levels at diagnosis (A), using ketoconazole monotherapy (B), using osilodrostat monotherapy (C) and using osilodrostat–ketoconazole combination therapy (D).

Serum cortisol (nmol/L) 08:00 h 24:00 h 16:00 h 20:00 h 12:00 h 16:00 h
A. At diagnosis 660 615 716 566 541 561
B. Ketoconazole monotherapy 741 545 502 224 242 508
C. Osilodrostat monotherapy 658 637 588 672 486 692
D. Osilodrostat–ketoconazole combination 436 172 154 103 135 274
Table 2Salivary cortisol levels at diagnosis (A), using ketoconazole monotherapy (B), using osilodrostat monotherapy (C) and using osilodrostat-ketoconazole combination therapy (D).

Salivary cortisol (nmol/L) 23:00 h 12:00 h 13:00 h Mean
A. At diagnosis 47 62 38 49
B. Ketoconazole monotherapy 20 15 21 18
C. Osilodrostat monotherapy 85 90 56 77
D. Osilodrostat–ketoconazole combination 10 14 9 11

Treatment

As this condition occurred during the COVID-19 pandemic, it was decided to first initiate steroidogenesis inhibitors to lower the patient’s cortisol levels. Initially, ketoconazole was initiated and uptitrated up to 1000 mg per day based on close serum cortisol monitoring, with a three-fold increase of liver enzymes and poor control of cortisol levels (Table 1). In the absence of biological efficacy, ketoconazole was replaced by osilodrostat, which was gradually increased up to 30 mg per day (10 mg at 08:00 h and 20 mg at 20:00 h) without reaching normal cortisol levels (Table 1) and with slightly increased blood pressure levels. Considering the lack of efficacy of anticortisolic drugs used as monotherapy, we combined osilodrostat (30 mg per day) to ketoconazole (600 mg per day), that is, at the last maximal tolerated dose as monotherapy of each drug.

Outcome

This combination of steroidogenesis inhibitors achieved a good control in cortisol levels, mimicking a physiological circadian rhythm (Table 1D). The patient did not exhibit any side effect and the control of cortisol levels resulted in a rapid improvement of hypertension, kalemia, diabetes control and disappearance of lower limbs oedema. The patient underwent a 18F-FDG PET-CT that did not exhibit any increased uptake in both adrenal masses and a 123I-Iodocholesterol scintigraphy exhibiting a highly increased uptake in both adrenal masses, predominating in the left adrenal mass (70 mm). Unilateral adrenalectomy of the larger mass was then performed, and as the immediate post-operative serum cortisol level was 50 nmol/L, hydrocortisone was administered at a dose of 30 mg per day, with a stepwise decrease to 10 mg per day over 3 months. Pathological examination exhibited macronodular adrenal hyperplasia with a 70-mm adreno cortical adenoma (WEISS score: 1 and Ki67: 1%). The genetic screening exhibited a c.1908del p.(Phe637Leufs*6) variant of ARMC5 (pathogenic), located in exon 5. The patient has no offspring and is no longer in contact with the rest of his family.

Discussion

The goal of the treatment with steroidogenesis inhibitors is normalization of cortisol production allowing the improvement of comorbidities (1). Most studies dealing with currently available steroidogenesis inhibitors used as monotherapy reported an overall antisecretory efficacy of roughly 50% in CS. This rate of efficacy was probably underestimated in retrospective studies due to the lack of adequate uptitration of the dose; For example, the median dose reported in the French retrospective study on ketoconazole was only 800 mg/day, while 50% of the patients were uncontrolled at the last follow-up (2).

Steroidogenesis inhibitors can be combined to better control hypercortisolism. Up to now, such combinations, mainly ketoconazole and metyrapone, were mainly reported in patients with severe CS (median urinary-free Cortisol (UFC) 30- to 40-fold upper-limit norm (ULN)) and life-threatening comorbidities (34). Normal UFC was reported in up to 86% of these patients treated with high doses of ketoconazole and metyrapone. Expected side effects (such as increased liver enzymes for ketoconazole or worsened hypertension and hypokalemia for metyrapone) were reported in the majority of the patients. The fear of these side effects probably explains the lack of uptitration in previous reports. Combination of steroidogenesis inhibitors has previously been described by Daniel et al. in the largest study reported on the use of metyrapone in CS; 29 patients were treated with metyrapone and ketoconazole or mitotane, including 22 in whom the second drug was added to metyrapone monotherapy because of partial efficacy or adverse effects. The final median metyrapone dose in patients controlled with combination therapy was 1500 mg per day (5).

Combination of adrenal steroidogenesis inhibitors should not be reserved to patients with severe hypercortisolism. In the case shown here, the association was highly effective in terms of secretion, using lower doses than those applied as a single treatment, but without the side effects previously observed with higher doses of each treatment used as a monotherapy. To our knowledge, the association of ketoconazole and osilodrostat had never been reported. Ketoconazole blocks several enzymes of the adrenal steroidogenesis such as CYP11A1, CYP17, CYP11B2 (aldosterone synthase) and CYP11B1 (11-hydroxylase), leading to decreased cortisol and occasionally testosterone concentrations. Though liver enzymes increase is not dose-dependent, it usually happens at doses exceeding 400–600 mg per day (2). Osilodrostat blocks CYP11B1 and CYP11B2; a combination should thus allow for a complete blockade of these enzymes that are necessary for cortisol secretion. Short-term side effects such as hypokalemia and hypertension are similar to those observed with metyrapone, due to increased levels of the precursor deoxycorticosterone, correlated with the dose of osilodrostat (6). As for our patient, the occurrence of side effects should not lead to immediately switch to another drug, but rather to decrease the dose and add another cortisol-lowering drug. Moreover, considering the current cost of newly-released drugs such a strategy could lower financial costs for patients and/or society.

Another point to take into account is the current COVID-19 pandemic, for which, as recently detailed in experts’ opinion (7), the main aim is to reach eucortisolism, whatever the way. Indeed patients presenting with CS usually also present with comorbidities such as obesity, hypertension, diabetes mellitus and immunodeficiency (8). Surgery, which represents the gold standard strategy in the management of CS (19), might be delayed to reduce the hospital-associated risk of COVID-19, with post-surgical immunodepression and thromboembolic risks (7). Because immunosuppression and thromboembolic diathesis are common CS features (910), during the COVID-19 pandemic, the use of steroidogenesis inhibitors appears of great interest. In these patients, combing steroidogenesis inhibitors at intermediate doses might allow for a rapid control of hypercortisolism without risks of major side effects if a single uptitrated treatment is not sufficient. Obviously, the management of associated comorbidities would also be crucial in this situation (11).

To conclude, we report for the first time a case of CS, in the context of primary bilateral macronodular adrenocortical hyperplasia successfully treated with a well-tolerated combination of ketoconazole and osilodrostat. While initial levels of cortisol were not very high, we could not manage to control hypercortisolism with ketoconazole monotherapy, and could not increase the dose due to side effects. The same result was observed with another steroidogenesis inhibitor, osilodrostat. This strategy could be considered for any patient with uncontrolled hypercortisolism and delayed or unsuccessful surgery, especially in the context of the COVID-19 pandemic.

Declaration of interest

F C and T B received research grants from Recordati Rare Disease and HRA Pharma Rare Diseases. Frederic Castinetti is on the editorial board of Endocrinology, Diabetes and Metabolism case reports. Frederic Castinetti was not involved in the review or editorial process for this paper, on which he is listed as an author.

Funding

This work did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Patient consent

Informed written consent has been obtained from the patient for publication of the case report.

Author contribution statement

V A was the patient’s physician involved in the clinical care and collected the data. T B and F C supervised the management of the patient. F C proposed the original idea of this case report. V A drafted the manuscript. F C critically reviewed the manuscript. T B revised the manuscript into its final version.

References

Benefits of Medication Before Surgery for Cushing’s Syndrome Still Unclear

In Europe, nearly 20 percent of patients with Cushing’s syndrome receive some sort of medication for the disease before undergoing surgery, a new study shows.

Six months after surgery, these patients had remission and mortality rates similar to those who received surgery as a first-line treatment, despite having worse disease manifestations when the study began. However, preoperative medication may limit doctors’ ability to determine the immediate success of surgery, researchers said.

A randomized clinical trial is needed to conclusively address if preoperative medication is a good option for Cushing’s patients waiting for surgery, they stated.

The study, “Preoperative medical treatment in Cushing’s syndrome. Frequency of use and its impact on postoperative assessment. Data from ERCUSYN,” was published in the European Journal of Endocrinology. 

Surgery usually is the first-line treatment in patients with Cushing’s syndrome. But patients also may receive preoperative medication to improve cortisol excess and correct severe diseases occurring simultaneously with Cushing’s.

Multiple studies have hypothesized that preoperative medication can have a beneficial effect on patients who undergo surgery. However, data on the beneficial impact of medication on morbidity, and the immediate surgical and long-term outcomes in patients with Cushing’s syndrome, are limited and inconclusive.

So, researchers made use of the European Registry on Cushing’s Syndrome (ERCUSYN), the largest database that collects information on diagnosis, management, and long-term follow-up in Cushing’s patients.

The team set out to collect information of the prevalence of preoperative medication in Cushing’s patients throughout Europe, and whether it influences patients’ outcomes after surgery. It also aimed to determine the differences between patients who receive preoperative medication versus those who undergo surgery directly.

Researchers analyzed 1,143 patients in the ERCUSYN database from 57 centers in 26 countries. Depending on what was causing the disease, patients were included in four major groups: pituitary-dependent Cushing’s syndrome (68%), adrenal-dependent Cushing’s syndrome (25%), Cushing’s syndrome from an ectopic source (5%), and Cushing’s syndrome from other causes (1%).

Overall, 20 percent of patients received medication – ketoconazole, metyrapone, or a combination of both – before surgery. Patients with ectopic and pituitary disease were more likely to receive medication compared to patients whose disease stemmed from the adrenal glands. Preoperative treatment lasted for a median of 109 days.

Patients in the pituitary group who were prescribed preoperative medication had more severe clinical features at diagnosis and poorer quality of life compared to those who received surgery as first-line treatment. No differences were found in the other groups.

But patients with pituitary-dependent disease receiving medication were more likely to have normal cortisol within seven days of surgery, or the immediate postoperative period, compared to patients who had surgery without prior medication. These patients also had a lower remission rate.

Within six months of surgery, however, there were no differences in morbidity or remission rates observed between each group. Also, no differences were seen in perioperative mortality rates – within one month of surgery.

Interestingly, researchers noted that patients who took medication prior to surgery were less likely to be in remission immediately after surgery. The reason, they suggest, might be because the medication already had begun to improve the clinical and biochemical signs of the disease, “so changes that take place in the first week after surgery may be less dramatic.”

“A randomized trial assessing simple endpoints, such as length of hospital stay, surgical impression and adverse effects of surgery, is needed to conclusively demonstrate that [preoperative medication] is a valid option in patients waiting for surgical correction of hypercortisolism,” the team concluded.

From https://cushingsdiseasenews.com/2018/02/22/benefits-cushings-syndrome-pre-surgery-medication-unclear-study/

What You Should Know About Pituitary Tumors

Ask the Experts

Igor Kravets, MD
Endocrinologist, Assistant Professor Division of Endocrinology,
Diabetes and Metabolism
Stony Brook Medicine
Raphael Davis, MD
Neurosurgeon, Professor and Chair Department of Neurosurgery
Co-Director, Stony Brook University Neurosciences Institute

 

Where do pituitary tumors form?
Dr. Kravets: A pituitary tumor is an abnormal growth of cells in the pituitary gland, which is a small, pea-sized organ located in the center of the brain, behind the nose and eyes. The pituitary is a “master gland” of the body; it produces many hormones that control other endocrine glands and certain functions of the body.
Are they mostly benign or malignant?
Dr. Davis: Most pituitary tumors are benign (non-cancerous). However, because of the location of the pituitary gland at the base of the skull, pituitary tumors can cause problems since they grow upward. Eventually some will press against the area where the optic nerves intersect, causing vision problems. They can also cause hormonal imbalance.What causes pituitary tumors?
Dr. Kravets: No one knows for sure what causes pituitary tumors. About one to five percent of pituitary tumors occur within families. Most are not inherited, however there are certain, rare, inherited conditions such as multiple endocrine neoplasia type 1 (MEN 1), that carry a higher risk of pituitary tumors.

What are the different types of pituitary tumors?
Dr. Davis: Adenomas are benign tumors that develop on the pituitary gland behind the eyes. These tumors can change levels in hormone production or cause vision loss. Craniopharyngiomas are benign tumors that develop at the base of the brain where it meets the pituitary gland. They commonly affect children 5 to 10 years of age, but adults can sometimes be affected in their 50s and 60s.

What are the symptoms?
Dr. Kravets: Symptoms vary depending on the type and size of a pituitary tumor but not all pituitary tumors cause symptoms. Many pituitary tumors are not diagnosed until symptoms appear. Some pituitary tumors are found incidentally on brain imaging obtained for a reason unrelated to the pituitary. Certain symptoms may develop when pituitary tumors grow so large that they exert pressure on surrounding structures.

Such symptoms include:
• Changes in vision (particularly loss of peripheral/outer edge vision)
• Headache

Other symptoms are related to either deficiency or excessive production of certain hormones. Common symptoms caused by such hormonal disturbances include:
• Menstrual cycle changes (irregular or lack of menstrual periods
• Erectile dysfunction or loss of sex drive
• Weight changes
• Production of breast milk by a woman who has not given birth
• Accelerated or stunted growth in a child or teenager
• Growth of the hands, feet, forehead and jaw in adults
• Development of a round face, a hump between the shoulders or both

How is a pituitary tumor diagnosed?
Dr. Kravets: An endocrinologist will ask you about the symptoms you are experiencing, and about your personal and family health history. He or she will perform a physical exam and order tests of your blood and urine. A magnetic resonance imaging (MRI) scan or computerized tomography (CT or CAT) scan may also be ordered to obtain detailed images of the brain and the pituitary gland. In rare instances, a biopsy (surgical procedure to remove a small sample of the tumor for examination) is required.

What treatments are available?
Dr. Davis: Treatments may include surgery, radiation therapy or medication. Transsphenoidal surgery is surgery performed through the nose and sphenoid sinus (located in the very back part of the nose, just beneath the base of the brain) to remove a pituitary tumor. It can be performed with an endoscope, microscope or both and is a team effort between neurosurgeons and ear, nose and throat (otolaryngology/ENT) surgeons. Radiation therapy uses high-energy x-rays to kill the tumor cells and is recommended when surgery is not an option, if the pituitary tumor remains, or if the tumor causes symptoms that are not relieved by medicine.

Why choose Stony Brook?
Dr. Kravets: Our Pituitary Care Center provides access to all of the coordinated expert care you need in one location, close to home — which can make the course of your treatment easier. Our team includes specialists from endocrinology, neurosurgery, otolaryngology (ENT), radiation oncology, neuropathology, neuroradiology, neuro-ophthalmology, and patient education and support.

To make an appointment with one of our Pituitary Care Center endocrinologists, call
(631) 444-0580. To make an appointment with one of our Pituitary Care Center neurosurgeons,
call (631) 444-1213. To learn more, visit stonybrookmedicine.edu/pituitary.

All health and health-related information contained in this article is intended to be general and/or educational in nature and should not be used as a substitute for a visit with a healthcare professional for help, diagnosis, guidance, and treatment. The information is intended to offer only general information for individuals to discuss with their healthcare provider. It is not intended to constitute a medical diagnosis or treatment or endorsement of any particular test, treatment, procedure, service, etc. Reliance on information provided is at the user’s risk. Your healthcare provider should be consulted regarding matters concerning the medical condition, treatment, and needs of you and your family. Stony Brook University/SUNY is an affirmative action, equal opportunity educator and employer.

From https://www.stonybrookmedicine.edu/patientcare/pituitarytumors

%d bloggers like this: