Cushing’s Syndrome caused by ACTH Precursors Secreted from a Pancreatic Yolk Sac Tumor in an Adult

Here, we report the first adult case of pancreatic yolk sac tumor with ectopic adrenocorticotropic hormone (ACTH) syndrome. The patient was a 27-year-old woman presenting with abdominal distension, Cushingoid features, and hyperpigmentation. Endogenous Cushing’s syndrome was biochemically confirmed. The ACTH level was in the normal range, which raised the suspicion of ACTH precursor-dependent disease. Elevated ACTH precursors were detected, supporting the diagnosis of ectopic ACTH syndrome. Functional imaging followed by tissue sampling revealed a pancreatic yolk sac tumor. The final diagnosis was Cushing’s syndrome due to a yolk sac tumor. The patient received a steroidogenesis inhibitor and subsequent bilateral adrenalectomy for control of hypercortisolism. Her yolk sac tumor was treated with chemotherapy and targeted therapy. Cushing’s syndrome secondary to a yolk sac tumor is extremely rare. This case illustrated the utility of ACTH precursor measurement in confirming an ACTH-related pathology and distinguishing an ectopic from a pituitary source for Cushing’s syndrome.

Introduction

Ectopic adrenocorticotrophic hormone (ACTH) syndrome, also termed paraneoplastic Cushing’s syndrome, can be caused by the secretion of ACTH and/or ACTH precursors from ectopic tumors. The tumors concerned secrete ACTH precursors, including unprocessed proopiomelanocortin (POMC) and POMC-derived peptides, owing to the altered post-translational processing of POMC (1). These tumors are associated with intense hypercortisolism and various complications, such as hypertension, hyperglycemia, osteoporosis, infection risks, and thrombotic tendencies (2). Distinguishing ectopic from pituitary-dependent Cushing’s syndrome is often challenging. The two conditions are classically distinguished by their variable responses to dynamic endocrine tests, including the high-dose dexamethasone suppression test, the corticotrophin-releasing-factor (CRF) test, and the desmopressin test (3). Pituitary imaging may sometimes provide a diagnosis if a pituitary macroadenoma is identified at this juncture. The gold standard for diagnosing pituitary Cushing’s is a positive inferior petrosal sinus sampling (IPSS) result. The measurement of ACTH precursors is reported to have diagnostic value in this scenario (4).

The most common source of ectopic ACTH is intrathoracic tumors, including bronchial carcinoid and small cell lung cancers. Other possible sources include gut neuroendocrine tumors and medullary thyroid cancer. Recognizing the potential causes of ectopic ACTH syndrome is essential as this provides guidance in locating the causative tumor and allows tumor-directed therapies. A yolk sac tumor as a cause of ectopic ACTH syndrome has only been reported in a 2-year-old child but not in adults (5). Here, we present a case of a 27-year-old Chinese woman who had Cushing’s syndrome due to ectopic ACTH precursor production from a pancreatic yolk sac tumor.

Case description

A 27-year-old Chinese woman, who had unremarkable past health and family history, presented with right upper quadrant abdominal pain and nausea in early 2020. Abdominal ultrasonography was unrevealing. A few months later, she developed Cushingoid features and oligomenorrhea. At presentation, her blood pressure was 160/95 mmHg, body weight was 65.6 kg, and body mass index was 23.2 kg/m2. She had a moon face, hirsutism, proximal myopathy, bruising, thinning of the skin, and acne. She also had hyperpigmentation on the nails and knuckles of both hands (Figure 1).

Figure 1
www.frontiersin.orgFigure 1. Cushingoid features at presentation include moon face, acne, thin skin, and easy bruising. Hyperpigmentation on the nails and knuckles was also noted.

Diagnostic assessments

Her 9 am and 9 pm cortisol were both >1,700 nmol/L. Her 24-h urine-free cortisol was beyond the upper measurable limit at >1,500 nmol/L. Her serum cortisol was 759 nmol/L after a 1 mg overnight-dexamethasone suppression test, confirming endogenous Cushing’s syndrome. The morning ACTH was 35 pg/mL (upper limit of normal is 46 pg/mL). After excluding a high dose-hook effect, her blood sample was concomitantly sent for ACTH measurement using two different platforms to eliminate possible interference, which might cause a falsely low ACTH reading. ACTH was 19 pg/mL (upper limit of normal is 46 pg/mL) using an IMMULITE 2000 XPI, Siemens Healthineers, Erlangen, Germany, and 17 pg/mL (reference range: 7–63 pg/mL) using a Cobas e-801, Roche Diagnostics, Indianapolis, IN, United States, therefore verifying the ACTH measurement.

In view of this being ACTH-dependent Cushing’s syndrome, a high-dose-dexamethasone suppression test (HDDST) was performed, and her cortisol was not suppressed at 890 nmol/L, with ACTH 42 pg/mL. The serum cortisol day profile showed a mean cortisol level of >1,700 nmol/L (i.e., higher than the upper measurable limit of the assay) and an ACTH of 17 pg/mL. A CRF test using 100 μg of corticorelin showed less than a 50% rise in ACTH and no rise in cortisol levels (Supplementary Table S1). She suffered from multiple complications of hypercortisolism, including thoracic vertebral collapse with back pain, diabetes mellitus (HbA1c 6.7% and fasting glucose 7.6 mmol/L), and hypokalemic hypertension, with a lowest potassium level of 2.3 mmol/L.

The rapid onset of intense hypercortisolism and refractory hypokalemia, as well as the responses in the HDDST and CRF tests raised the suspicion of ectopic ACTH syndrome. Tumor markers were measured. Alpha-fetoprotein (AFP) was markedly raised at 33,357 ng/mL (reference range: <9 ng/mL). Beta-human chorionic gonadotropin (beta-hCG) was not elevated. Carcinoembryonic antigen (CEA) was 4.0 ng/mL (reference range: <3 ng/mL) and CA 19–9 was 57 U/mL (reference range: <37 U/mL). The marked hyperpigmentation in the context of normal ACTH levels pointed to the presence of an underlying tumor producing circulating ACTH precursors. Hence, magnetic resonance imaging (MRI) of the pituitary gland was not performed at this juncture. ACTH precursors were measured using a specialized immunoenzymatic assay (IEMA) employing in-house monoclonal antibodies against the ACTH region and the gamma MSH region. Both monoclonal antibodies have to bind to these regions in POMC and pro-ACTH to create a signal. The patient had a level of 4,855 pmol/L (upper limit of normal is 40 pmol/L) (6). This supported Cushing’s syndrome from an ectopic source secondary to an excess in ACTH precursors.

Localization studies were arranged to identify the source of ectopic ACTH precursors. Computed tomography (CT) of the thorax did not show any significant intrathoracic lesion but incidentally revealed a pancreatic mass. Dedicated CT of the abdomen confirmed the presence of a 7.9 × 5.6 cm lobulated mass in the pancreatic body; the adrenal glands were unremarkable. 18-FDG and 68Ga-DOTATATE dual-tracer positron-emission tomography-computed tomography (PET-CT) showed that the pancreatic mass was moderately FDG-avid and non-avid for DOTATATE (Supplementary Figure S1). Multiple FDG-avid nodal metastases were also present, including left supraclavicular fossa lymph nodes.

Fine needle aspiration of the left supraclavicular fossa lymph node yielded tumor cells featuring occasional conspicuous nucleoli, granular coarse chromatin, irregular nuclei, and a high nuclear-to-cytoplasmic ratio. Mitotic figures were infrequent. On immunostaining, the tumor cells were positive for cytokeratin 7 and negative for cytokeratin 20. Focal expression of CDX-2, chromogranin, and synaptophysin was noted. They were negative for TTF-1, GCDPF, Gata 3, Pax-8, CD56, ACTH, inhibin, and S-100 protein. Further immunostaining was performed in view of highly elevated AFP. The tumor cells expressed AFP, Sall4, and MNF-116. They were negative for c-kit, calretinin, Melan A and SF-1. Placental ALP (PLAP) was weak and equivocal. The features were in keeping with a yolk sac tumor.

Therapeutic intervention and outcome

The patient had significant hypokalemic hypertension requiring losartan 100 mg daily, spironolactone 100 mg daily, and a potassium supplement of 129 mmol/day. Co-trimoxazole was given for prophylaxis against Pneumocystis jirovecii pneumonia. Metyrapone was started and up-titrated to 1 gram three times per day. However, in view of persistent hypercortisolism, with urinary free cortisol persistently above the upper measurable limit of the assay, bilateral adrenalectomy was performed. The tumor was mainly in the periadrenal soft tissue, with vascular invasion. The tumor formed cords, nests, and ill-defined lumen (Figure 2). The tumor cells were polygonal and contained pale to eosinophilic cytoplasm and pleomorphic nuclei, some with large nucleoli. Mitosis was present while tumor necrosis was not obvious. The stroma was composed of vascular fibrous tissue, with minimal inflammatory reaction. Immunohistochemical study showed that the tumor was positive for cytokeratin 7, MNF-116, AFP, and glypican-3, and also positive for Sall4 and HNF1β. The tumor cells were negative for cytokeratin 20, PLAP, CD30, negative for neuroendocrine markers including S100 protein, synaptophysin, chromogranin, and also negative for Melan-A, inhibin, and ACTH. Histochemical study for Periodic acid–Schiff–diastase (PAS/D) showed no cytoplasmic zymogen granules like those of acinar cell tumor. The features were compatible with yolk sac tumor. She was put on glucocorticoid and mineralocorticoid replacements post-operatively.

Figure 2
www.frontiersin.orgFigure 2. Histology and immunohistochemical staining pattern of tumor specimen. (A) HE stain x 40 showing tumor cells in the soft tissue and peritoneum. (B) HE × 400 showing that the tumor forms cords, nests, and ill-formed lumen in the vascular stroma. The tumor cells are polygonal with pale cytoplasm and pleomorphic nuclei. (C) PAS/D stain showing no cytoplasmic zymogen granules. (D) Tumor is diffusely positive for cytokeratin 7. (E) Tumor is positive for AFP. (F) Tumor is positive for glypican-3. (G) Tumor is diffusely positive for HNF1β. (H) Tumor is diffusely positive for SALL4.

Regarding her oncological management, she received multiple lines of chemotherapy, but the response was poor. Due to limited access to the ACTH precursor assay, serial measurement was unavailable. Treatment response was monitored by repeated imaging and monitoring of AFP. Figure 3 shows a timeline indicating the key events of the disease, showing the trends of the AFP and cortisol levels. Apart from (i) bleomycin, etoposide, and platinum, she was sequentially treated with (ii) etoposide, ifosfamide with cisplatin, and (iii) palliative gemcitabine with oxaliplatin. Next-generation sequencing showed a BRAF V600E mutation, for which (iv) dabrafenib and trametinib were given. Unfortunately, the disease progressed, and the patient succumbed approximately one year after the disease was diagnosed.

Figure 3
www.frontiersin.orgFigure 3. Timeline with serial cortisol and alpha-fetoprotein levels from diagnosis to patient death.

Discussion

This case demonstrates the diagnostic value of ACTH precursor measurement in the diagnosis of ectopic Cushing’s syndrome. ACTH precursors are raised in all ectopic tumors responsible for Cushing’s syndrome and could be useful in distinguishing ectopic from pituitary Cushing’s syndrome (4). Moreover, Cushing’s syndrome due to a yolk sac tumor has been reported only once in a pediatric case, and this is the first adult case reported in the literature (5).

POMC is sequentially cleaved in the anterior pituitary into pro-ACTH and then into ACTH, which is released into the circulation and binds to ACTH receptors in the adrenal cortex, leading to glucocorticoid synthesis (57). Due to incomplete processing, ACTH precursors are found in normal subjects at a concentration of 5–40 pmol/L (6). Pituitary tumors are traditionally well-differentiated and can also relatively efficiently process ACTH precursors. However, this processing is less efficient in ectopic tumors that cause Cushing’s syndrome (8). Some less differentiated pituitary macroadenomas can secrete ACTH precursors into the circulation; however, these tumors are diagnosed by imaging and so do not, in general, cause problems with differential diagnosis (9).

Measurement of ACTH precursors by immunoradiometric assay (IRMA) was first described by Crosby et al. (10). The assay utilized monoclonal antibodies specific for ACTH and the other binding gamma-MSH. The assay only detects peptides expressing both epitopes and therefore measures POMC and pro-ACTH. The assay does not cross-react with other POMC-derived peptides such as beta-lipotropin, ACTH, and N-POMC.

Oliver et al. demonstrated that, compared to the pituitary adenomas in Cushing’s disease, all ectopic tumors responsible for Cushing’s syndrome in their study produce excessive POMC and pro-ACTH (4). The excessive production of ACTH precursors may reflect neoplasm-induced modification and amplification of POMC production. It is suggested that POMC binds to and activates the ACTH receptor because it contains the ACTH amino-acid sequence, or it is cleaved to ACTH in the adrenal glands to cause hypercortisolism (5) (Figure 4). Moreover, cleavage of POMC may produce peptides that exert mitogenic actions on adrenal cells and lead to adrenocortical growth. Outside the adrenal tissue, excessive ACTH precursors in Cushing’s syndrome caused by ectopic tumors can lead to marked hyperpigmentation. Both hypercortisolism and hyperpigmentation were observed in the reported case.

Figure 4
www.frontiersin.orgFigure 4. Postulated pathological mechanism of ectopic ACTH precursors.

In patients with ACTH-dependent Cushing’s syndrome, ectopic tumors should be distinguished from pituitary tumors. The HDDST, at a cut-off of 50% cortisol suppression, gives a sensitivity of 81% and a specificity of 67% for pituitary dependent Cushing’s syndrome (11). The CRF test provides 82% sensitivity and 75% specificity for pituitary disease (8). IPSS is the gold standard in distinguishing pituitary from ectopic tumors in Cushing’s syndrome. Utilization of CRF-stimulated IPSS provides 93% sensitivity and 100% specificity for pituitary disease. It also allows correct lateralization in 78% of patients with pituitary tumors. However, it is only available in specialized centers.

In a retrospective cohort, the ACTH precursor level distinguished well between Cushing’s disease and ectopic ACTH syndrome (4). With a cut-off of 100 pmol/L, the test achieved 100% sensitivity and specificity for ectopic ACTH syndrome. More recently, this assay has been used to diagnose patients with occult ectopic ACTH syndrome, with ACTH precursors above 36 pmol/L (8). Unfortunately, the immunoassay for ACTH precursor measurement utilizes in-house monoclonal antibodies, which are not widely available.

Cross-reactivity of POMC in commercially available ACTH assays ranges from 1.6% to 4.7% (12). In cases of ectopic tumors causing Cushing’s syndrome with markedly raised ACTH-precursors and intense hypercortisolism, the cross-reactivity would give significantly high ‘ACTH’ measurements to suggest an ACTH-related pathology. The degree of cross-reactivity, which is variable, should ideally be provided by the assay manufacturer as it affects result interpretation. Lower levels of ACTH precursor production might not be detected, especially by assays with low precursor cross-reactivity. Clinical vigilance is crucial in reaching the correct diagnosis. In patients with marked hypercortisolism and a normal ACTH concentration, like in this case, the measurement of ACTH precursors would allow the accurate diagnosis of Cushing’s syndrome caused by ACTH precursors.

Ectopic tumors causing Cushing’s syndrome are associated with more intense hypercortisolism than Cushing’s disease (11). However, due to variable cross-reactivity, commercial ACTH assays might not accurately detect the excessive ACTH precursors responsible for the clinical syndrome. For this reason, ACTH measurements in these two conditions can significantly overlap and may not differentiate between ectopic and pituitary diseases (4). On the other hand, the more specific POMC assay described in 1996, which does not cross-react with pro-ACTH, has a low sensitivity of 80% for ectopic Cushing’s syndrome and is not now available (13). Hence, the ACTH precursor assay used in this reported case, which detects POMC and pro-ACTH, appears to provide the best diagnostic accuracy from the available literature.

Serial measurement of ACTH precursors may play a role in monitoring the treatment response in an ACTH precursor secreting tumor. In the case of ectopic ACTH secretion, the corticotropic axis is slowed down and ACTH is almost exclusively of paraneoplastic origin. Immunotherapy is known to alter the functioning of the hypothalamic–pituitary corticotropic axis; however, its effect on ectopic secretions is not known. More data is required before the role of ACTH precursor measurement for disease monitoring in these scenarios can be ascertained.

The incidence of endogenous Cushing’s syndrome is reported to be 2 to 4 per million people per year (14). Ectopic sources of Cushing’s syndrome are responsible for 9 to 18% of these cases. Typical sources of these ectopic tumors include bronchial carcinoid tumors, small-cell lung cancer, and gut neuroendocrine tumors. Notably, germ cell tumors, including teratomas, ovarian epithelial tumors, and ovarian endometrial tumors, are also possible ectopic sources of Cushing’s syndrome.

The histological diagnosis of germ cell tumor in a non-genital site is challenging, especially for the poorly differentiated, or with somatic differentiation. Immunostaining, chromosomal, or genetic study are very important in confirming the diagnosis. AFP elevation in our case limited the differential diagnoses to germ cell tumors/yolk sac tumors, hepatocellular carcinoma, and rare pancreatic tumors. The specimen was biopsied from the retroperitoneum, and the morphology was a dominant trabecular pattern or a hepatoid pattern. It showed diffuse positive immunostaining for cytokeratin, AFP, and glypican-3. It was also diffusely and strongly positive for HNF1β and SALL4, supporting the diagnosis of yolk sac tumor. Both HNF1β and SALL4, being related with the expression of genes associated with stem cells or progenitor cells, are used as sensitive and specific markers for germ cell tumors/yolk sac tumors (1516).

Staining related to pancreatic acinar cell carcinoma and neuroendocrine tumor were performed. PAS/D staining showed a lack of zymogen granules. A lack of nuclear β-catenin positivity was shown. Staining for neuroendocrine markers, including chromogranin and synaptophysin, was negative. Bcl-10 and trypsin were not available in the local setting.

Cushing’s syndrome due to a yolk sac tumor was reported only once, in a 2-year-old child (5). The abdominal yolk sac tumor was resistant to cisplatin, with rapid disease progression, and the patient succumbed 1.5 years after initial presentation. Yolk sac tumor in the pancreas is also rare, with only 4 cases reported so far. The first case was reported in a 57-year-old woman with an incidentally detected abdominal mass (17). The tumor stained positive for AFP, PLAP, and CEA. The second case was a 70-year-old asymptomatic woman with histology showing a group of tumor cells with features of a yolk sac tumor, and another group showing features of pancreatic ductal adenocarcinoma with mucin production, suggesting a yolk sac tumor derived from pancreatic ductal adenocarcinoma (18). The tumor showed partial positivity for AFP, Sall4, glypican-3, and cytokeratin 7, as found in our case, while MNF-116 and PLAP staining results were not described. The third was in a 33-year-old man with a solitary pancreatic head mass with obstructive jaundice (19). The patient had undergone Whipple’s procedure followed by cisplatin-based chemotherapy, resulting in at least 5 years of disease remission. The latest reported case was in a 32-year-old man presenting with abdominal pain (20). Notably, initial imaging showed diffuse enlargement of the pancreas and increased FDG uptake without a distinct mass. Reassessment imaging 11 months later showed a 13 cm pancreatic mass. The initial imaging findings suggested initial intraductal growth of the tumor, as reported in some subtypes of pancreatic carcinoma. None of the reported cases of adult pancreatic yolk sac tumors were associated with abnormal hormone secretion. We reported the first adult case of pancreatic yolk sac tumor with ectopic ACTH syndrome. The case represents an overlap of two rarities. It demonstrates that pancreatic yolk sac tumor is a possible cause of ectopic ACTH syndrome.

Conclusion

ACTH precursor measurement helps to distinguish ectopic ACTH syndrome from Cushing’s disease. The test has superior diagnostic performance and is less invasive than IPSS. Nonetheless, the limited availability of the assay may restrict its broader use in patient management. We describe the first adult case of pancreatic yolk sac tumor with ACTH precursor secretion resulting in Cushing’s syndrome. This adds to the list of origins of ectopic ACTH syndrome in adults.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

Written informed consent was obtained from the individual to publish any potentially identifiable images or data in this article.

Author contributions

JC wrote the manuscript. JC, CW, WC, AW, KW, and PT researched the data. WC, AL, EL, YW, KT, KL, and CL critically reviewed and edited the manuscript. DL initiated and conceptualized this case report and is the guarantor of this work. All authors contributed to the article and approved the submitted version.

Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2023.1246796/full#supplementary-material

References

1. Stewar, PM, Gibson, S, Crosby, SR, Pennt, R, Holder, R, Ferry, D, et al. ACTH precursors characterize the ectopic ACTH syndrome. Clin Endocrinol. (1994) 40:199–204. doi: 10.1111/j.1365-2265.1994.tb02468.x

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Young, J, Haissaguerre, M, Viera-Pinto, O, Chabre, O, Baudin, E, and Tabarin, A. MANAGEMENT OF ENDOCRINE DISEASE: Cushing’s syndrome due to ectopic ACTH secretion: an expert operational opinion. Eur J Endocrinol. (2020) 182:R29–58. doi: 10.1530/EJE-19-0877

PubMed Abstract | CrossRef Full Text | Google Scholar

3. Fleseriu, M, Auchus, R, Bancos, I, Ben-Shlomo, A, Bertherat, J, Biermasz, NR, et al. Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. (2021) 9:847–75. doi: 10.1016/S2213-8587(21)00235-7

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Oliver, RL, Davis, JR, and White, A. Characterisation of ACTH related peptides in ectopic Cushing’s syndrome. Pituitary. (2003) 6:119–26. doi: 10.1023/B:PITU.0000011172.26649.df

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Gevers, EF, Meredith, S, Shah, P, Torpiano, J, Peters, C, Sebire, NJ, et al. Cushing syndrome in a child due to pro-opiomelanocortin (POMC) secretion from a yolk sac tumor. Eur J Endocrinol. (2017) 176:K1–7. doi: 10.1530/EJE-16-0776

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Gibson, S, Crosby, SR, Stewart, MF, Jennings, AM, McCall, E, and White, A. Differential release of proopiomelanocortin-derived peptides from the human pituitary: evidence from a panel of two-site immunoradiometric assays. J Clin Endocrinol Metab. (1994) 78:835–41.

PubMed Abstract | Google Scholar

7. Harno, E, Gali Ramamoorthy, T, Coll, AP, and White, A. POMC: the physiological power of hormone processing. Physiol Rev. (2018) 98:2381–430. doi: 10.1152/physrev.00024.2017

CrossRef Full Text | Google Scholar

8. Page-Wilson, G, Freda, PU, Jacobs, TP, Khandji, AG, Bruce, JN, Foo, ST, et al. Clinical utility of plasma POMC and AgRP measurements in the differential diagnosis of ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab. (2014) 99:E1838–45. doi: 10.1210/jc.2014-1448

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Gibson, S, Ray, DW, Crosby, SR, Dornan, TL, Jennings, AM, Bevan, JS, et al. Impaired processing of proopiomelanocortin in corticotroph macroadenomas. J Clin Endocrinol Metab. (1996) 81:497–502.

PubMed Abstract | Google Scholar

10. Crosby, SR, Stewart, MF, Ratcliffe, JG, and White, A. Direct measurement of the precursors of adrenocorticotropin in human plasma by two-site immunoradiometric assay. J Clin Endocrinol Metab. (1988) 67:1272–7. doi: 10.1210/jcem-67-6-1272

PubMed Abstract | CrossRef Full Text | Google Scholar

11. Aron, DC, Raff, H, and Findling, JW. Effectiveness versus efficacy: the limited value in clinical practice of high dose dexamethasone suppression testing in the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab. (1997) 82:1780–5. doi: 10.1210/jc.82.6.1780

PubMed Abstract | CrossRef Full Text | Google Scholar

12. Monaghan, PJ, Kyriacou, A, Sturgeon, C, Davies, A, Trainer, PJ, White, A, et al. Proopiomelanocortin interference in the measurement of adrenocorticotrophic hormone: a United Kingdom National External Quality Assessment Service study. Clin Endocrinol. (2016) 85:569–74. doi: 10.1111/cen.13118

CrossRef Full Text | Google Scholar

13. Raffin-Sanson, ML, Massias, JF, Dumont, C, Raux-Demay, MC, Proeschel, MF, Luton, JP, et al. High plasma proopiomelanocortin in aggressive adrenocorticotropin-secreting tumors. J Clin Endocrinol Metab. (1996) 81:4272–7.

PubMed Abstract | Google Scholar

14. Beuschlein, F, and Hammer, GD. Ectopic pro-opiomelanocortin syndrome. Endocrinol Metab Clin N Am. (2002) 31:191–234. doi: 10.1016/S0889-8529(01)00025-1

CrossRef Full Text | Google Scholar

15. Yu, DD, Guo, SW, Jing, YY, Dong, YL, and Wei, LX. A review on hepatocyte nuclear factor-1beta and tumor. Cell Biosci. (2015) 5:58. doi: 10.1186/s13578-015-0049-3

PubMed Abstract | CrossRef Full Text | Google Scholar

16. Miettinen, M, Wang, Z, McCue, PA, Sarlomo-Rikala, M, Rys, J, Biernat, W, et al. SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol. (2014) 38:410–20. doi: 10.1097/PAS.0000000000000116

PubMed Abstract | CrossRef Full Text | Google Scholar

17. Zhang, B, Gao, S, Chen, Y, and Wu, Y. Primary yolk sac tumor arising in the pancreas with hepatic metastasis: a case report. Korean J Radiol. (2010) 11:472–5. doi: 10.3348/kjr.2010.11.4.472

PubMed Abstract | CrossRef Full Text | Google Scholar

18. Yonemaru, J, Takahashi, M, Nara, S, Ichikawa, H, Ishigamori, R, Imai, T, et al. A yolk sac tumor of the pancreas and derived xenograft model effectively responded to VIP chemotherapy. Pancreatology. (2020) 20:551–7. doi: 10.1016/j.pan.2019.12.021

PubMed Abstract | CrossRef Full Text | Google Scholar

19. Galanis, I, Floros, G, Simou, M, Kyriakopoulos, G, and Stylianidis, G. An extremely rare case of a primary pancreatic yolk sac tumor. Cureus. (2022) 14:e26007. doi: 10.7759/cureus.26007

PubMed Abstract | CrossRef Full Text | Google Scholar

20. Sui, H, Zhu, Z, Li, Z, and Luo, Y. Primary pancreatic yolk sac tumor presenting as diffusely enlarged pancreas in initial 18F-FDG PET/CT. Clin Nucl Med. (2020) 45:483–6. doi: 10.1097/RLU.0000000000003038

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: Cushing’s syndrome, ectopic ACTH syndrome, yolk sac tumor, pancreatic tumor, ACTH precursor

Citation: Chang JYC, Woo CSL, Chow WS, White A, Wong KC, Tsui P, Lee ACH, Leung EKH, Woo YC, Tan KCB, Lam KSL, Lee CH and Lui DTW (2023) Cushing’s syndrome caused by ACTH precursors secreted from a pancreatic yolk sac tumor in an adult—a case report and literature review. Front. Med. 10:1246796. doi: 10.3389/fmed.2023.1246796

Received: 18 July 2023; Accepted: 20 November 2023;
Published: 05 December 2023.

Edited by:

Alessandro Vanoli, University of Pavia, Italy

Reviewed by:

Petar Brlek, St. Catherine Specialty Hospital, Croatia
Wafa Alaya, Hospital University Tahar Sfar, Tunisia

Copyright © 2023 Chang, Woo, Chow, White, Wong, Tsui, Lee, Leung, Woo, Tan, Lam, Lee and Lui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: David Tak Wai Lui, dtwlui@hku.hk

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

From https://www.frontiersin.org/articles/10.3389/fmed.2023.1246796/full

Diagnosis and Differential Diagnosis of Cushing’s Syndrome

D. Lynn Loriaux, M.D., Ph.D.

N Engl J Med 2017; 376:1451-1459April 13, 2017DOI: 10.1056/NEJMra1505550

More than a century ago, Harvey Cushing introduced the term “pluriglandular syndrome” to describe a disorder characterized by rapid development of central obesity, arterial hypertension, proximal muscle weakness, diabetes mellitus, oligomenorrhea, hirsutism, thin skin, and ecchymoses.1 Cushing knew that this syndrome was associated with adrenal cancer,2 and he suspected that some cases might have a pituitary component.

On September 6, 1911, he performed a craniotomy on one of his patients (referred to as Case XLV) but found no pituitary tumor.3 In his description of the case, he goes on to say that “we may perchance be on the way toward the recognition of the consequences of hyperadrenalism.”2 With time, it became clear that the disorder could be caused by small basophilic adenomas of the pituitary gland,4 and the pluriglandular syndrome became known as Cushing’s syndrome.

Fuller Albright provided the next conceptual advance in an extraordinary report, published in the first volume of the Laurentian Hormone Conference, “The Effects of Hormones on Osteogenesis in Man”5:

It has been our concept that protoplasm in general, like the protoplasmic matrix of bone, is constantly being anabolized and catabolized at one and the same time; a factor which increases catabolism would lead to very much the same net result as a factor which inhibits anabolism, but there would be some differences; it is my belief that the “S” hormone [cortisol] is anti-anabolic rather than catabolic. . . . The anti-anabolism . . . is contrasted with the increased anabolism due to an excess of the “N” hormone [testosterone] in the adreno-genital syndrome. This anti-anabolism of protoplasm in Cushing’s syndrome accounts for not only the osteoporosis, but the muscular weakness, the thin skin, probably the easy bruisability, and possibly the atrophy of the lymphoid tissues and thymus.

Nonetheless, in the intervening years, the physical examination of patients suspected to have glucocorticoid excess focused on the anabolic changes, essentially to the exclusion of the antianabolic changes. With the rapid increase in the rate of obesity in the general population, Cushing’s syndrome can no longer be reliably separated from the metabolic syndrome of simple obesity on the basis of anabolic signs alone. However, the antianabolic changes in Cushing’s syndrome are very effective in making this distinction. This review focuses on the problems introduced into the diagnosis and differential diagnosis of Cushing’s syndrome by the obesity epidemic and on ways to alter the traditional approach, using the antianabolic changes of excess cortisol to separate patients with Cushing’s syndrome from obese patients with the insulin-resistant metabolic syndrome.

PHYSICAL EXAMINATION

Andreas Vesalius (1514–1564) published his transformational work on human anatomy, De Humani Corporis Fabrica Libri Septem, in 1543. It is the book that corrected many of Galen’s anatomical errors. The book was met with considerable hostility. As an example, Jacobus Sylvius (Jacques Dubois, 1478–1555), the world’s leading anatomist at the time and Vesalius’s former mentor, on being asked his opinion of the work, replied, “Galen is not wrong. It is man that has changed, and not for the better.”6 This was not true then, but it is true now.

Approximately one third of the U.S. population is obese. The worldwide prevalence of the metabolic syndrome among obese persons is conservatively estimated at 10%; that is, approximately 12 million people have the obesity-related metabolic syndrome.7,8 The clinical picture of this syndrome is almost the same as that of Cushing’s syndrome.9,10 The prevalence of undiagnosed Cushing’s syndrome is about 75 cases per 1 million population, or 24,000 affected persons. On the basis of these prevalence estimates, the chance that a person with obesity, hypertension, hirsutism, type 2 diabetes, and dyslipidemia has Cushing’s syndrome is about 1 in 500. In Harvey Cushing’s era, when obesity was rare, making the diagnosis of Cushing’s syndrome was the most certain aspect of the management of this disorder. Today, making the diagnosis is the least certain aspect in the care of patients with Cushing’s syndrome.

The metabolic syndrome caused by glucocorticoid hypersecretion can be differentiated from the obesity-associated metabolic syndrome with the use of a careful assessment of Albright’s antianabolic effects of cortisol. These effects — osteopenia, thin skin, and ecchymoses — are present in patients with Cushing’s syndrome but not in patients with simple obesity.

Patients in whom osteoporosis is diagnosed radiographically are more likely to have Cushing’s syndrome than those who do not have osteoporosis, with a positive likelihood ratio of 11.11-13 Today, a z score of −2 at the lumbar spine supports this criterion. Skinfold thickness is conveniently measured with an electrocardiographic caliper that has the points dulled with a sharpening stone and the screws tightened so that the gap is maintained when the caliper is removed from the skinfold. The skin over the proximal phalanx of the middle finger of the nondominant hand is commonly used for this measurement

 

(Figure 1 FIGURE 1Measurement of Skinfold Thickness.). A thickness of less than 2 mm is considered to be thin skin. Patients who have thin skin are more likely to have Cushing’s syndrome, with a positive likelihood ratio of 116

 

(Figure 2 FIGURE 2 Comparison of Skinfold Thickness in Patients with Cushing’s Syndrome and Those with Other Conditions Related to Insulin Resistance.).13-15 Finally, patients who have three or more ecchymoses that are larger than 1 cm in diameter and not associated with trauma such as venipuncture are more likely to have Cushing’s syndrome than are patients without such findings, with a positive likelihood ratio of 4.13,16

If we know the prevalence of undiagnosed Cushing’s syndrome in the population of persons with the obesity-related metabolic syndrome, we can begin to calculate the probability that a person has Cushing’s syndrome, using the likelihood ratios for the antianabolic features observed on physical examination. Likelihood ratios can be converted into probabilities with the use of Bayes’ theorem. This conversion is markedly facilitated by the Fagan nomogram for this purpose.17

The prevalence of undiagnosed Cushing’s syndrome is not known, but it can be estimated. Two persons per 1 million population die from adrenal cancer every year.18 The current life span for patients with adrenocortical carcinoma, after diagnosis, is between 2 and 4 years.19,20 Allowing 3 years to make the diagnosis, the prevalence of undiagnosed Cushing’s syndrome is 6 cases per million. In most case series of Cushing’s syndrome, an average of 8% of patients have adrenal carcinoma.21 If 6 per million is 8% of the group, the total Cushing’s syndrome group is 75 persons per million, or 24,000 persons. If all 24,000 patients are included in the metabolic syndrome group, comprising 12 million people, the prevalence of Cushing’s syndrome is 0.002, or 0.2%. With a probability of 0.2% and a likelihood ratio of 116 for thin skin, 18 for osteopenia, and 4 for ecchymoses, the probability that a patient with these three findings has Cushing’s syndrome is 95%.

URINARY FREE CORTISOL

The diagnosis of all endocrine diseases requires a clinical presentation that is compatible with the disease, as well as identification of the pathophysiological cause. An assessment for excess glucocorticoid effects can be made by measuring the 24-hour urinary free cortisol level.22 There are two kinds of free cortisol: plasma protein-unbound cortisol and cortisol unconjugated to sulfuric or hyaluronic acid. Protein-unbound cortisol is filtered in the glomerulus and then reabsorbed in the collecting system. About 3% of filtered cortisol ends up in the urine. This free cortisol in the urine is unconjugated. Thus, the urinary free cortisol level is a direct reflection of the free, bioactive cortisol level in plasma. The free cortisol level is quantified in a 24-hour urine sample by averaging the increased secretion of cortisol in the morning and the decreased secretion in the afternoon and at night. Urinary creatinine is also measured to determine whether the collection is complete. Creatinine levels of less than 1.5 g per day for men and less than 1 g per day for women indicate incomplete collection, and the test should be repeated in patients with these levels.

Unconjugated cortisol can be extracted directly from urine with a nonpolar lipid solvent. After extraction, the cortisol is purified by means of high-pressure liquid chromatography and then quantified with a binding assay, usually radioimmunoassay. Free cortisol also can be quantitated directly by means of mass spectroscopy. The urinary free cortisol assay of choice uses high-pressure liquid chromatographic separation followed by mass spectrometric quantitation.23 With the use of this assay, the urinary free cortisol level in healthy adults ranges from 8 to 51 μg per 24 hours (mean [±SD], 23±8). Clinical depression increases urinary free cortisol excretion, and most studies show that the level of urinary free cortisol ranges from 10 to 60 μg per day in patients with typical clinical signs and symptoms of depression. If we use 60 μg per day as the cutoff between normal values (<60 μg per day) and elevated values (≥60 μg per day), urinary free cortisol excretion of 62 μg per day or more has a positive likelihood ratio of 11.24 Thus, in a patient presenting with obesity, hypertension, type 2 diabetes, and hirsutism who has thin skin, osteopenia, ecchymoses, and an elevated urinary free cortisol level, the probability of Cushing’s syndrome is 1 (100%). For such patients, the clinician should move directly to a differential diagnostic evaluation.

DEXAMETHASONE-SUPPRESSION TEST

The dexamethasone-suppression test is commonly used in the diagnosis of Cushing’s syndrome. This test was developed by Grant Liddle in the early 1960s as a differential diagnostic test to separate corticotropin-dependent from corticotropin-independent Cushing’s syndrome. This is now done by measuring the plasma corticotropin level. Unfortunately, dexamethasone suppression has continued to be used as a screening test for Cushing’s syndrome.

The control group for this test comprises patients with obesity and depression in whom cortisol secretion is not suppressed in response to an oral dose of 1 mg of dexamethasone at midnight. Of the current U.S. population of 360 million people, approximately one third (120 million people) are obese. Of those who are obese, 10% (12 million people) have depression. In half these patients (6 million people), the plasma cortisol level will not be suppressed in response to a dexamethasone challenge. On the basis of my estimate of the current prevalence of undiagnosed Cushing’s syndrome (24,000 cases) and the estimate of the at-risk population (6 million persons), the positive predictive value of the dexamethasone-suppression test is only 0.4%. Thus, this test should not influence what the physician does next and should no longer be used for this purpose.

OUTLIERS

For patients with convincing evidence of Cushing’s syndrome on physical examination and an elevated 24-hour urinary free cortisol level, the differential diagnostic process outlined below should be initiated. However, a small group of patients will not meet these criteria.

Some patients have a strongly positive physical examination but low or zero urinary free cortisol excretion. Plasma corticotropin levels are suppressed in these patients. These patients are receiving exogenous glucocorticoids. The glucocorticoid must be identified, and a plan must be made for its discontinuation. Sometimes the glucocorticoid is being given by proxy (e.g., by a parent to a child), and no history of glucocorticoid administration can be found. Nevertheless, the glucocorticoid must be identified and discontinued.

Other patients have few or no clinical signs of Cushing’s syndrome but do have elevated urinary free cortisol excretion. Plasma corticotropin is measurable in these patients. They are usually identified during an evaluation for arterial hypertension. All such patients should undergo inferior petrosal sinus sampling to determine the source of corticotropin secretion. Ectopic sources are almost always neoplastic and are usually in the chest.25 Patients with eutopic secretion usually have the syndrome of generalized glucocorticoid resistance.26

Finally, a few patients have convincing findings on physical examination coupled with a normal urinary free cortisol level. In such cases, the clinician should make sure that urinary free cortisol is being measured with high-performance liquid chromatography and mass spectrometry, that renal function is normal, and that the collections are complete. “Periodic” Cushing’s syndrome must be ruled out by measuring urinary free cortisol frequently over the course of a month.27 If these efforts fail, the patient should be followed for a year, with urinary free cortisol measurements performed frequently. No additional tests should be performed until the situation is sorted out. More tests would be likely to lead to an unnecessary surgical procedure.

DIFFERENTIAL DIAGNOSIS

The differential diagnosis of Cushing’s syndrome is shown in Figure 3

FIGURE 3Differential Diagnosis of Cushing’s Syndrome.. If plasma corticotropin is measurable, the disease process is corticotropin-dependent. If corticotropin is not measurable, the process is corticotropin-independent.

Corticotropin-dependent causes of Cushing’s syndrome are divided into those in which the corticotropin comes from the pituitary (eutopic causes) and those in which the corticotropin comes from elsewhere (ectopic causes). This differentiation is made with the measurement of corticotropin in inferior petrosal sinus plasma and the simultaneous measurement of corticotropin in peripheral (antecubital) plasma immediately after corticotropin-releasing hormone stimulation of pituitary corticotropin secretion. In samples obtained 4, 6, and 15 minutes after stimulation with corticotropin-releasing hormone, eutopic corticotropin secretion is associated with a ratio of the central-plasma corticotropin level to the peripheral-plasma corticotropin level of 3 or more. Ectopic corticotropin secretion is associated with a central-to-peripheral corticotropin ratio of less than 3. The positive predictive value of this test is 1 (Figure 4

FIGURE 4Maximal Ratio of Corticotropin in Inferior Petrosal Sinus Plasma to Corticotropin in Peripheral Plasma in Patients with Cushing’s Syndrome, Ectopic Corticotropin Secretion, or Adrenal Disease.).28

Although some authorities suggest that inferior petrosal sinus sampling can safely be bypassed in patients with corticotropin-dependent Cushing’s syndrome and a well-defined pituitary adenoma, I disagree. The incidence of nonfunctioning pituitary microadenomas is between 15% and 40%.29 This means that up to 40% of patients with ectopic secretion of corticotropin have an incidental pituitary abnormality. If it is assumed that the pituitary abnormality is responsible for corticotropin secretion, 15 to 40% of patients with ectopic secretion of corticotropin will be misdiagnosed and submitted to a transsphenoidal exploration of the sella turcica and pituitary gland. The prevalence of ectopic corticotropin secretion in the population of patients with undiagnosed Cushing’s syndrome is about 10%, accounting for 2400 patients. Up to 40% of these patients, or 960, have an incidental pituitary tumor. The mortality associated with transsphenoidal microadenomectomy is 1%.30 If all 360 to 960 patients undergo this procedure, there will be up to 10 deaths from an operation that can have no benefit. For this reason alone, all patients with corticotropin-dependent Cushing’s syndrome should undergo inferior petrosal sinus sampling to confirm the source of corticotropin secretion before any surgical intervention is contemplated.

Patients with eutopic corticotropin secretion are almost certain to have a corticotropin-secreting pituitary microadenoma. An occasional patient will have alcohol-induced pseudo–Cushing’s syndrome. The slightest suggestion of alcoholism should lead to a 3-week abstinence period before any surgery is considered.31

Patients with ectopic corticotropin secretion are first evaluated with computed tomography (CT) or magnetic resonance imaging (MRI) of the chest. In two thirds of these patients, a tumor will be found.25 If nothing is found in the chest, MRI of the abdominal and pelvic organs is performed. If these additional imaging studies are also negative, there are two options: bilateral adrenalectomy or blockade of cortisol synthesis. If blockade is chosen, the patient should undergo repeat scanning at 6-month intervals.32 If no source is found by the end of the second year, it is unlikely that the source will ever be found, and bilateral adrenalectomy should be performed for definitive treatment (Doppman JL: personal communication).

Corticotropin-independent Cushing’s syndrome is usually caused by an adrenal neoplasm. Benign tumors tend to be small (<5 cm in diameter) and secrete a single hormone, cortisol. The contralateral adrenal gland is suppressed by the cortisol secreted from the tumorous gland. If the value for Hounsfield units is less than 10 and the washout of contrast material is greater than 60% at 15 minutes, the tumor is almost certainly benign.33 Such tumors can be treated successfully with laparoscopic adrenalectomy.

The syndromes of micronodular and macronodular adrenal dysplasia usually affect both adrenal glands. The nodules secrete cortisol. Corticotropin is suppressed, as is the internodular tissue of the adrenal glands. Percutaneous bilateral adrenalectomy, followed by glucocorticoid and mineralocorticoid treatment, is curative.

Adrenal tumors secreting more than one hormone (i.e., cortisol and androgen or estrogen) are almost always malignant. Surgical removal of all detectable disease is indicated, as is a careful search for metastases. If metastases are found, they should be removed. This usually requires an open adrenalectomy. It goes without saying that adrenal tumors, nodules, and metastases should be treated by the most experienced endocrine cancer surgeon available.

If the plasma cortisol level on the morning after a transsphenoidal microadenomectomy is 0, the operation was a success. The patient should be treated with oral hydrocortisone, at a dose of 12 mg per square meter of body-surface area once a day in the morning, and a tetracosactide (Cortrosyn) stimulation test should be performed at 3-month intervals. When the tetracosactide-stimulated plasma cortisol level is higher than 20 μg per deciliter (551 μmol per liter), cortisol administration can be stopped. The same rule applies in the case of a unilateral adrenalectomy. If the adrenalectomy is bilateral, cortisol, at a dose of 12 to 15 mg per square meter per day, and fludrocortisone (Florinef), at a dose of 100 μg per day, should be prescribed as lifelong therapy.

SUMMARY

The obesity epidemic has led to necessary changes in the evaluation and treatment of patients with Cushing’s syndrome. The most dramatic change is the emphasis on the antianabolic alterations in Cushing’s syndrome, which can provide a strong basis for separating patients with Cushing’s syndrome from the more numerous patients with obesity and the metabolic syndrome. More can be done along these lines. Likelihood ratios are known for proximal muscle weakness and can be known for brain atrophy and growth failure in children.

The dexamethasone-suppression test, although still very popular, no longer has a role in the evaluation and treatment of patients with Cushing’s syndrome. Only three biochemical tests are needed: urinary free cortisol, plasma corticotropin, and plasma cortisol measurements. Urinary free cortisol excretion is the test that confirms the clinical diagnosis of Cushing’s syndrome. To be trustworthy, it must be performed in the most stringent way, with the use of high-pressure liquid chromatography followed by mass spectrometric quantitation of cortisol. Measurement of plasma corticotropin is used to separate corticotropin-dependent from corticotropin-independent causes of Cushing’s syndrome and to separate eutopic from ectopic secretion of corticotropin. Inferior petrosal sinus sampling should be performed in all patients with corticotropin-dependent Cushing’s syndrome because of the high prevalence of nonfunctioning incidental pituitary adenomas among such patients. Measurement of plasma cortisol has only one use: determining the success or failure of transsphenoidal microadenomectomy or adrenalectomy. If the plasma cortisol level is not measurable on the morning after the operation (<5 μg per deciliter [138 μmol per liter]), the procedure was a success; if it is measurable, the operation failed. The surgeon must not administer intraoperative or postoperative synthetic glucocorticoids until the plasma cortisol level has been measured.

Successful evaluation of a patient who is suspected of having Cushing’s syndrome requires an endocrinologist who is skilled in physical diagnosis. Also required is a laboratory that measures urinary free cortisol using high-performance liquid chromatography and mass spectrometry and that can measure plasma cortisol and plasma corticotropin by means of radioimmunoassay.

Inferior petrosal sinus sampling is performed by an interventional radiologist. The treatment for all causes of Cushing’s syndrome, other than exogenous glucocorticoids, is surgical, and neurosurgeons, endocrine surgeons, and cancer surgeons are needed. This level of multidisciplinary medical expertise is usually found only at academic medical centers. Thus, most, if not all, patients with Cushing’s syndrome should be referred to such a center for treatment.

Disclosure forms provided by the author are available with the full text of this article at NEJM.org.

No potential conflict of interest relevant to this article was reported.

SOURCE INFORMATION

From the Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health and Science University, Portland.

Address reprint requests to Dr. Loriaux at the Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., L607, Portland, OR 97239-3098, or at .

From http://www.nejm.org/doi/full/10.1056/NEJMra1505550