Once-Daily Treatment for Cushing Syndrome May Safely Restore Cortisol Rhythms

Once-daily evening osilodrostat improved cortisol rhythms, sleep, and quality of life in Cushing syndrome without compromising disease control or safety.

 

Once-daily osilodrostat administered in the evening is safe, effective, and restores circadian cortisol rhythms in patients with biochemically controlled Cushing syndrome (CS), according to results published in the Journal of Clinical Endocrinology & Metabolism.

“By achieving lower evening cortisol exposures, this regimen improves sleep quality and overall quality of life. Over the long term, these changes may translate into potential cardiovascular benefits,” wrote corresponding author Andrea M. Isidori, MD, PhD, and colleagues.

A loss of circadian cortisol rhythm is a hallmark of CS and contributes to systemic adverse effects, the authors explained. The prospective pilot study assessed chronotherapy with once-daily osilodrostat and its effect on circadian cortisol profiles in 16 patients with well-controlled CS who transitioned from twice-daily osilodrostat therapy.

Researchers used ultra-high performance liquid chromatography–tandem mass spectrometry on saliva, serum, and urine samples to analyze circadian steroid hormones at baseline, when patients were taking twice-daily osilodrostat, and 60 to 90 days after they switched to a single equivalent daily dose at 19:00 ±1 hour. Investigators also assessed cardiometabolic markers, quality of life, sleep function, and safety outcomes.

At baseline, most patients had mild CS; the mean osilodrostat dose was 4.2 ±1.3 mg.

“Compared to the standard twice-daily regimen, once-daily dosing resulted in significantly reduced late afternoon to early morning cortisol exposure…without altering morning peak levels, reflecting an improved alignment with the natural circadian rhythm of glucocorticoids,” the researchers reported.

With the transition to dosing at 19:00 ±1 hour, salivary cortisol exposure decreased 6.1 ng/mL/h during the afternoon to early morning period, according to the study. Additionally, scores on the CushingQoL questionnaire increased 4.2 points, while scores on the Pittsburgh Sleep Quality Index decreased 1.7 points. The serum steroid precursors 11-deoxycorticosterone and 11-deoxycortisol also decreased.

“Eight patients advancing dosing to 16:00 ±1 hour showed comparable reductions,” the authors wrote, “with phase shifts in acrophase and nadir.”

No patients experienced adrenal insufficiency, liver toxicity, electrocardiogram abnormalities, or loss of disease control with the transition. Moreover, blood pressure, lipid profile, and glucose metabolism trended toward improvement.

“These results lay the groundwork for future large-scale, long-term studies to fully explore the potential of chronotherapy approach in the management of CS,” the researchers wrote.

https://www.physiciansweekly.com/once-daily-treatment-for-cushing-syndrome-may-safely-restore-cortisol-rhythms/

Osilodrostat Treatment of Cushing Syndrome in Real-World Clinical Practice

Abstract
Context
In clinical trials, osilodrostat (11β-hydroxylase inhibitor) effectively reduced cortisol levels in patients with endogenous Cushing syndrome (CS).
Objectives
A real-world study (ILLUSTRATE) was conducted evaluating osilodrostat use in patients with various etiologies of CS in the United States.
Methods
A retrospective chart-review study was conducted of adults with CS treated with osilodrostat between May 1, 2020, and October 29, 2021.
Results
A total of 42 patients (Cushing disease, n = 34; CS due to adrenal adenoma, n = 5; ectopic adrenocorticotropin syndrome [EAS], n = 3) were included. Starting doses were 2 mg twice daily in 27/42 patients (64.3%), maintenance doses were 2 mg twice daily in 6 of 9 patients (66.7%) attaining them. During osilodrostat treatment, urinary free cortisol (UFC) decreased below the upper limit of normal (ULN) in 14 of 20 patients (70.0%) with pretreatment UFC greater than the ULN. Osilodrostat response was observed across a range of doses (2-20 mg/day). In Cushing disease, median UFC and late-night salivary cortisol decreased from 3.03 and 2.39 × ULN, respectively, to 0.71 and 1.13 × ULN at last assessment in those with available data (n = 17 and 8, respectively). UFC decreased in all patients with adrenal CS or EAS with available data (n = 2 each). There were no unexpected safety signals; the most common adverse events (incidence ≥20%) were fatigue, nausea, and lower-extremity edema. Glucocorticoid withdrawal syndrome and/or adrenal insufficiency were reported in 12 of 42 patients (28.6%) after osilodrostat initiation, resulting in treatment discontinuation in 4.
Conclusion
In routine practice with dosing individualized according to clinical condition, response, and tolerability, osilodrostat was effective and well tolerated regardless of CS etiology and severity.
Cushing disease, ectopic adrenocorticotropin syndrome, adrenal Cushing syndrome, osilodrostat, retrospective, real world
Subject Pituitary and Neuroendocrinology
Issue Section: Clinical Research Article
Endogenous neoplastic Cushing syndrome (CS) is a serious endocrine condition characterized by excessive endogenous cortisol secretion [1, 2]. Untreated, hypercortisolism has serious cardiovascular, metabolic, neuropsychiatric, and infectious consequences, which negatively affect patients’ quality of life [2-4]. The risk of mortality is higher in patients with CS than in the general population, mainly because of greater mortality from cardiovascular and infectious diseases [2-5]. More recently, it has been shown that cancer risk is increased in population cohorts with CS [6, 7].
Most cases of CS are caused by excess secretion of adrenocorticotropin (ACTH) from a pituitary adenoma (Cushing disease), which results in excess cortisol release from the adrenal glands [2, 4]. However, some patients may present with ectopic ACTH syndrome (EAS; also referred synonymously as ectopic CS) or ACTH-independent cortisol excess from adrenal adenomas, adrenocortical cancers, or bilateral nodular adrenal hyperplasia (adrenal CS) [2, 4].
Osilodrostat is a potent oral inhibitor of 11β-hydroxylase, the enzyme that catalyzes the final step of cortisol synthesis in the adrenal cortex [8]. In phase 3 trials in patients with Cushing disease, osilodrostat was associated with a rapid and sustained reduction in cortisol levels, as well as improvements in cardiovascular and metabolic parameters, the physical manifestations of Cushing disease, and patients’ quality of life [9-13]. The clinical development program for osilodrostat also included a phase 2 study in patients with EAS or adrenal CS, which demonstrated that osilodrostat can lower cortisol regardless of the etiology of CS [14]. Based on these data, osilodrostat was licensed for use in adults with Cushing disease for whom pituitary surgery is not an option or has not been curative (United States) [15] and in adults/patients with endogenous CS (Europe [16]/Japan [17]).
Although prospective clinical trials are essential for demonstrating the efficacy and safety of drug therapies, they entail enrollment of selected patient populations and a tightly controlled research setting [18]. Real-world observational studies, in which the drug is used according to physicians’ clinical practice, provide complementary and helpful information in this context. Previous real-world studies conducted in patients with CS in Europe have shown that osilodrostat reduces cortisol levels and improves comorbidities, with no unexpected safety signals [19-22]. The present study, osIlodrostat reaL-worLd Utilization Study To Retrospectively Assess paTient Experience (ILLUSTRATE), was conducted in multiple clinical practices in the United States to evaluate the dosing, effectiveness, and safety of osilodrostat in patients with CS, irrespective of its etiology.
Materials and Methods
ILLUSTRATE was a retrospective chart-review study of patients in the United States treated with osilodrostat between May 1, 2020, and October 29, 2021. The index date for each patient was defined as the date of the first osilodrostat prescription (between May 1, 2020, and October 29, 2021). Preprescription data were collected from the 12 months before each patient’s index date to provide baseline data for that patient.
Patients were eligible for inclusion if aged 18 years or older, with a diagnosis of endogenous neoplastic CS (due to a pituitary adenoma, adrenal adenoma, or ectopic tumor) and a documented prescription for osilodrostat on or after May 1, 2020. As osilodrostat was approved for Cushing disease in the United States earlier the same year (March 6, 2020) [23], the start date for ILLUSTRATE was selected to avoid inclusion of patients treated with osilodrostat in clinical trials. The study was approved by a central independent review board (Western Institutional Review Board). As the study employed secondary data collection of anonymized patient data, a waiver of consent was granted under the privacy rule of HIPPA (the Health Insurance Portability and Accountability Act).
If available, the following data were extracted from patients’ medical records into an electronic case report form (eCRF): demographic details (age, sex, race, ethnicity); clinical history (date of CS diagnosis, signs and symptoms, prior surgery and/or radiotherapy); duration of disease prior to osilodrostat prescription; other therapies (cortisol-lowering medications, concomitant steroid use or replacement, antihypertensive and antidiabetic medications); laboratory data (urinary free cortisol [UFC], late-night salivary cortisol [LNSC], morning serum cortisol, serum potassium, testosterone [female patients only]); osilodrostat use (starting dose, uptitration, downtitration, duration of treatment); and adverse events (AEs). AEs were selected from a dropdown list that included the following: hypotension, hyperkalemia, hypokalemia, prolonged QT interval on electrocardiogram, lower-extremity edema, dizziness, rash, constipation, fatigue, alopecia, headache, nausea, vomiting, pituitary tumor size, hypertension, hirsutism, acne, irregular menstruation, brain fog or other cognitive changes, insomnia, striae, muscle weakness, depression, anxiety, other emotional changes, arthralgia/myalgia, and sleep changes.
The following variables were derived from the information recorded in the eCRF: time to maintenance dose (maintenance dose was defined as the first dose that was not modified between two consecutive visits, which could include the baseline visit); titration interval (time between osilodrostat dose changes; if patients had multiple dose changes, the average was reported); and proportion of patients on osilodrostat 6 months after the index prescription. In patients who had dose changes after reaching the maintenance dose, the time between these dose changes was included in the calculation of average titration interval.
Investigator-reported events of glucocorticoid withdrawal syndrome (GWS) and adrenal insufficiency (AI) were evaluated by two of the authors (J.L.S.-S. and K.C.D.) and adjudicated according to symptoms and the level of morning serum cortisol, where available. If the symptoms were consistent with GWS and serum cortisol at the time of the event was greater than 10 µg/dL (>276 nmol/L), these cases were classified as GWS. If the symptoms were more severe or cortisol levels were less than or equal to 10 µg/dL (≤276 nmol/L), AI could not be ruled out, and these cases were classified as such. If the investigator recorded GWS and AI in the same patient at the same visit, they were classified as a single event.
Descriptive statistics were used for all variables based on the number of patients with data available for each variable. Laboratory measures were reported as n times the upper limit of normal (ULN). Independent quality assessments were conducted to check content, inconsistencies, and missing fields in the eCRF.
Results
Overall, 42 patients were included in the study: 34 patients with Cushing disease, 5 patients with adrenal CS as a result of adrenal adenoma, and 3 patients with EAS. Two patients with Cushing disease had only a single clinical encounter and were included in the baseline results only. Four patients (9.5%), all with Cushing disease, discontinued osilodrostat during follow-up; in all cases, this was because of GWS or AI.
Baseline Characteristics
Baseline demographics and clinical characteristics are summarized in Table 1. Mean age was 43.7 years, and most patients (76.2%) were female. Mean disease duration before osilodrostat prescription was 57.3 months, and most patients had previously undergone surgery (81.0%) and/or received one or more medical therapies (61.9%). In the subgroup of patients with adrenal CS (n = 5), 2 patients had undergone surgery and 2 patients had expressed a preference not to undergo surgery; in the final patient, information on previous surgery was not recorded in the eCRF. In the overall study population, median UFC, LNSC, and morning serum cortisol levels were 2.54, 2.39, and 1.16 × ULN, respectively. Twelve and 5 patients, respectively, had morning serum cortisol levels and UFC less than the ULN at baseline; of these, 6 (50.0%) and 3 (60.0%), respectively, had received previous medical therapy.
Table 1.Open in new tabBaseline demographic and clinical characteristics (overall and by etiology)
  All patients
(n = 42) Cushing disease (n = 34) Adrenal CS (n = 5)a EAS
(n = 3)b
Mean age (SD), y 43.7 (15.0) 40.8 (13.9) 49.2 (14.0) 66.7 (3.5)
Sex, n (%)
 Female 32 (76.2) 27 (79.4) 2 (40.0) 3 (100)
 Male 10 (23.8) 7 (20.6) 3 (60.0) 0
Race, n (%)
 White 22 (52.4) 17 (50.0) 4 (80.0) 1 (33.3)
 Black or African American 10 (23.8) 8 (23.5) 1 (20.0) 1 (33.3)
 Asian 2 (4.8) 1 (2.9) 0 1 (33.3)
 Multiracial 1 (2.4) 1 (2.9) 0 0
 Unknown 7 (16.7) 7 (20.6) 0 0
Ethnicity, n (%)
 Hispanic, Latino, or Spanish origin
  Yes 8 (19.0) 8 (23.5) 0 0
  No 28 (66.7) 20 (58.8) 5 (100) 3 (100)
 Unknown 6 (14.3) 6 (17.6) 0 0
Mean age at CS diagnosis (SD), y 37.7 (14.8) 34.9 (12.7) 40.0 (14.8) 66.3 (3.1)
Mean duration of disease prior to osilodrostat prescription (SD), mo 57.3 (82.0) 64.8 (86.7) 30.4 (26.6) 1.2 (0.3)
Previous pituitary or adrenal surgery for CS, n (%) 34 (81.0) 32 (94.1) 2 (40.0) 0
Radiotherapy for CS in last 5 y, n (%) 10 (23.8) 10 (29.4) 0 0
Previous medical therapy for CS,c n (%) 26 (61.9) 21 (61.8) 3 (60.0) 2 (66.7)
 Pasireotide 3 (7.1) 3 (8.8) 0 0
 Cabergoline 7 (16.7) 7 (20.6) 0 0
 Ketoconazole 10 (23.8) 8 (23.5) 0 2 (66.7)
 Metyrapone 2 (4.8) 1 (2.9) 1 (20.0) 0
 Mitotane 1 (2.4) 0 1 (20.0) 0
 Mifepristone 6 (14.3) 5 (14.7) 1 (20.0) 0
UFC,d × ULN n = 32 n = 25 n = 4 n = 3
 Mean (SD) 7.67 (14.84) 3.14 (2.98) 13.93 (15.25) 37.03 (36.46)
 Median (min-max) 2.54
(0.09-75.20) 2.28
(0.09-11.17) 13.77
(0.42-27.76) 33.33
(2.57-75.20)
LNSC,d × ULN n = 18 n = 16 n = 1 n = 1
 Mean (SD) 4.80 (8.18) 5.25 (8.59) 0.55 1.82
 Median (min-max) 2.39
(0.44-36.33) 2.78
(0.44-36.33) 0.55 1.82
Morning serum cortisol,d × ULN n = 32 n = 24 n = 5 n = 3
 Mean (SD) 1.23 (0.77) 1.13 (0.42) 1.08 (0.97) 2.33 (1.78)
 Median (min-max) 1.16
(0.19-4.38) 1.18
(0.19-1.88) 0.83
(0.39-2.76) 1.43
(1.17-4.38)
Potassium levels,d mmol/L n = 41 n = 33 n = 5 n = 3
 Mean (SD) 4.1 (0.6) 4.3 (0.5) 3.7 (0.5) 3.6 (0.9)
 Median (min-max) 4.0
(2.6-5.6) 4.2
(3.6-5.6) 3.4
(3.3-4.5) 3.7
(2.6-4.4)
Potassium levels <LLN,e n (%) n = 37
5 (13.5) n = 30
1 (3.3) n = 5
3 (60.0) n = 2
1 (50.0)
Testosterone levels,f × ULN n = 11 n = 9 n = 1 n = 1
 Mean (SD) 1.00 (1.48) 0.96 (1.56) 0.07 2.29
 Median (min-max) 0.36
(0.03-5.02) 0.36
(0.03-5.02) 0.07 2.29
ULNs varied between study centers, ranging from 32 to 64 µg/24 hours (88.3-176.6 nmol/L) for UFC, 0.01 to 0.112 µg/dL (0.28-3.09 nmol/L) for LNSC, 18.4 to 25 µg/dL (507.8-690.0 nmol/L) for morning serum cortisol, and 41 to 100 ng/dL (1.42-3.47 nmol/L) for testosterone (female patients).
Abbreviations: CS, Cushing syndrome; EAS, ectopic adrenocorticotropin syndrome; LLN, lower limit of normal; max, maximum; min, minimum; ULN, upper limit of normal.
aAll patients had adrenal adenoma.
bIn 1 patient, the primary tumor could not be located; in the other 2 patients, the location of the ectopic tumor was not recorded.
cReasons for stopping these therapies and switching to osilodrostat were not collected as part of this study.
dNot all patients had values recorded at baseline (see n numbers in each column).
eLLN was not available for all patients with available potassium data.
fFemale patients only.
Osilodrostat Dosing
Information on osilodrostat dosing is summarized in Table 2. The most common starting dose of osilodrostat was 4 mg/day in 28 of 47 patients (66.7%; Fig. 1A), comprising 2 mg twice daily in 27 patients and 4 mg once daily in 1 patient. Some patients with Cushing disease and adrenal CS were initiated on lower doses (1 mg once daily [n = 2] or twice daily [n = 10], or 2 mg once daily [n = 1]).
A, Total osilodrostat daily starting dose* in all patients (n = 42) and B, dose changes postinitiation (by etiology) in patients with at least one clinical encounter after initiating osilodrostat (n = 40). *Osilodrostat starting doses were given twice daily in all except 3 patients with Cushing disease (initiated on 1 mg once daily, 2 mg once daily, and 4 mg once daily) and 1 patient with adrenal CS (initiated on 1 mg once daily).
Figure 1.A, Total osilodrostat daily starting dose* in all patients (n = 42) and B, dose changes postinitiation (by etiology) in patients with at least one clinical encounter after initiating osilodrostat (n = 40). *Osilodrostat starting doses were given twice daily in all except 3 patients with Cushing disease (initiated on 1 mg once daily, 2 mg once daily, and 4 mg once daily) and 1 patient with adrenal CS (initiated on 1 mg once daily).
Open in new tabDownload slide
Abbreviations: CS, Cushing syndrome; EAS, ectopic adrenocorticotropin syndrome.
Table 2.Open in new tabOsilodrostat treatment (overall and by etiology)
  All patients
(n = 42) Cushing disease (n = 34) Adrenal CS (n = 5) EAS
(n = 3)
No. of patients with initial dose information 42 34 5 3
Starting total daily dose, mg
 Mean (SD) 3.4 (1.1) 3.4 (1.1) 3.0 (1.4) 4.0 (0.0)
 Median (min-max) 4 (1-6) 4 (1-6) 4 (1-4) 4 (4-4)
Starting dose schedule, n (%)
 Twice daily 38 (90.5) 31 (91.2) 4 (80.0) 3 (100)
 Once daily 4 (9.5) 3 (8.8) 1 (20.0) 0
Starting dose and schedule, n (%)
 1 mg once daily 2 (4.8) 1 (2.9) 1 (20.0) 0
 1 mg twice daily 10 (23.8) 9 (26.5) 1 (20.0) 0
 2 mg once daily 1 (2.4) 1 (2.9) 0 0
 2 mg twice daily 27 (64.3) 21 (61.8) 3 (60.0) 3 (100)
 3 mg twice daily 1 (2.4) 1 (2.9) 0 0
 4 mg once daily 1 (2.4) 1 (2.9) 0 0
No. of patients with postinitiation clinical encounters 40 32 5 3
Patients who reached maintenance dose by last interaction, n (%) 9 (22.5) 7 (21.9) 1 (20.0) 1 (33.3)
Time to maintenance dose or end of follow-up, wk
 Mean (SD) 34.7 (18.0) 36.7 (19.1) 23.0 (11.7) 33.6 (3.3)
 Median (min-max) 33 (0.7-78.1) 37 (0.7-78.1) 17 (13.0-37.6) 32 (31.3-37.4)
Maintenance dose,a n (%)
 2 mg twice daily 6 (66.7) 4 (57.1) 1 (100) 1 (100)
 4 mg twice daily 2 (22.2) 2 (28.6) 0 0
 10 mg twice daily 1 (11.1) 1 (14.3) 0 0
Patients with dose change, n (%) 25 (62.5) 21 (65.6) 2 (40.0) 2 (66.7)
Titration period in patients with dose change, wk
 Mean (SD) 13.8 (12.4) 14.8 (13.2) 4.9 (3.2) 13.0 (0.0)
 Median (min-max) 11 (2.6-57.0) 11 (4.6-57.0) 5 (2.6-7.1) 13 (13.0-13.0)
Osilodrostat treatment interruption,b n (%) 9 (22.5) 7 (21.9) 1 (20.0) 1 (33.3)
Duration of exposure up to treatment interruption or study end, wk
 Mean (SD) 35.2 (22.0) 36.5 (22.5) 26.8 (26.3) 35.8 (4.5)
 Median (min-max) 35 (0.7-78.1) 38 (0.7-78.1) 14 (4.0-69.7) 37 (30.7-39.3)
Duration of treatment up to study end,c wk
 Mean (SD) 37.0 (20.9) 38.2 (21.5) 29.4 (24.0) 36.0 (4.2)
 Median (min-max) 37 (0.7-78.1) 40 (0.7-78.1) 17 (13.0-69.7) 37 (31.3-39.3)
Patients on osilodrostat for ≥6 mo prior to study end,c,d n (%) 28 (96.6) 23 (95.8) 2 (100) 3 (100)
Duration of therapy prior to study endc in patients with ≥6 mo persistence, wk
 Mean (SD) 47.3 (15.2) 48.5 (15.3) 51.6 (25.6) 36.0 (4.2)
 Median (min-max) 44.9 (28.1-78.1) 45.7 (28.1-78.1) 51.7 (33.6-69.7) 37.4 (31.3-39.3)
Abbreviations: CS, Cushing syndrome; EAS, ectopic adrenocorticotropin syndrome.
aIn those who reached a maintenance dose (defined as a dose that was not modified between 2 consecutive visits) by last interaction.
bDefined as a break in osilodrostat treatment for 30 days or longer.
cOr treatment discontinuation (n = 4).
dIn 29 patients with 6 months’ follow-up (n = 24, 2, and 3 for Cushing disease, adrenal CS, and EAS, respectively).
Mean titration interval was 13.8 weeks for all patients (4.9 weeks in patients with adrenal CS, 13.0 weeks in patients with EAS, and 14.8 weeks in patients with Cushing disease). Nine patients (22.5%; 7 patients with Cushing disease and 1 patient each with adrenal CS and EAS) achieved a maintenance dose of osilodrostat (defined as no dose modification between 2 consecutive visits) after a mean (SD) of 34.7 (18.0) weeks. The most common maintenance dose was 2 mg twice daily (see Table 2).
Overall, 25 of 40 patients (62.5%) had their osilodrostat dose adjusted during the study. In most of these cases (n = 20), the dose was increased; 2 patients had a dose decrease and 3 patients had doses both increased and decreased (Fig. 1B). In those who had an osilodrostat dose increase only, most (14/20; 70.0%) had only a single dose increase; in the remaining patients, 4 (20.0%) had 2 dose increases and 2 (10.0%) had 4 dose increases. In those who had dose adjustments, there was no observable pattern between starting and final osilodrostat doses (Table 3). Overall, 9 of 40 patients (22.5%) had osilodrostat treatment temporarily interrupted, which occurred in the first 3 months of treatment in 5 patients, between treatment months 3 and 6 in 2 patients, and after 6 months in 2 patients. Reasons for temporary interruption were hypocortisolism-related AEs, patient undergoing surgery, lack of availability of osilodrostat in the hospital setting, and insurance noncoverage.
Table 3.Open in new tabShift table showing starting and final doses for those patients who had dose adjustments during the study period (n = 26)
Starting dosea Final dose, No. of patients
  1 mg/d 2 mg/d 4 mg/d 5 mg/d 6 mg/d 8 mg/d 10 mg/d 14 mg/d 20 mg/d
Cushing diseaseb
1 mg/d (n = 1)1
2 mg/d (n = 10)811
4 mg/d (n = 11) 1 1 1 4 2 2
Adrenal CS
1 mg/d (n = 1)1
4 mg/d (n = 1)1
EAS
4 mg/d (n = 2)11
Some patients had the same starting and final doses as their doses were increased then decreased during the study.
Abbreviations: CS, Cushing syndrome; EAS, ectopic adrenocorticotropin syndrome.
aOsilodrostat starting doses were given twice daily in all except 3 patients with Cushing disease (initiated on 1 mg once daily, 2 mg once daily, and 4 mg once daily) and 1 patient with adrenal CS (initiated on 1 mg once daily).
bOne patient had only their osilodrostat starting dose reported.
Mean (SD) duration of follow-up was 37.1 (20.5) weeks, and mean (SD) duration of osilodrostat treatment was 37.0 (20.9) weeks; almost all patients with postinitiation clinical encounters (96.6%) received treatment for 6 months or longer (see Table 2).
Changes in Cortisol Levels During Osilodrostat Treatment
In patients with available assessments, median values for all cortisol parameters decreased during osilodrostat treatment, regardless of CS etiology (Table 4). In the subgroup of patients with Cushing disease, median UFC and morning serum cortisol levels were less than the ULN at the last assessment (0.71 and 0.68 × ULN, respectively), while median LNSC levels were slightly higher than the ULN (1.13 × ULN). In patients with UFC, LNSC, and morning serum cortisol levels greater than the ULN at baseline, 12 of 16, 3 of 8, and 8 of 15, respectively, had levels less than the ULN during osilodrostat treatment (Fig. 2); the final osilodrostat doses in these patients ranged from 1 to 20 mg/day. Neither of the patients who had a final dose of 20 mg/day were receiving concomitant glucocorticoids (ie, they were not being treated with a “block-and-replace” approach). In those with UFC and morning serum cortisol less than the ULN at baseline, levels remained less than the ULN in 1 of 1 and 7 of 8 patients, respectively.
Changes in A, UFC; B, LNSC; and C, morning serum cortisol in individual patients. *In patient 23, the first and last doses recorded were both 2 mg twice daily; during the follow-up period, 2 changes in dose were recorded the same day on 2 separate occasions.
Figure 2.Changes in A, UFC; B, LNSC; and C, morning serum cortisol in individual patients. *In patient 23, the first and last doses recorded were both 2 mg twice daily; during the follow-up period, 2 changes in dose were recorded the same day on 2 separate occasions.
Open in new tabDownload slide
Abbreviations: CS, Cushing syndrome; EAS, ectopic adrenocorticotropin syndrome; LNSC, late-night salivary cortisol; NA, not available; UFC, urinary free cortisol; ULN, upper limit of normal.
Table 4.Open in new tabMedian (minimum-maximum) urinary free cortisol, late-night salivary cortisol, and morning serum cortisol levels (overall and by etiology)
  All patients Cushing disease Adrenal CS EAS
UFC, × ULN n = 21 n = 17 n = 2 n = 2
 Baseline 3.73 (0.09-75.20) 3.03 (0.09-11.17) 14.40 (1.03-27.76) 54.27 (33.33-75.20)
 Last assessment 0.71 (0.02-11.82) 0.71 (0.07-4.19) 6.18 (0.53-11.82) 1.44 (0.02-2.86)
LNSC, × ULN n = 8 n = 8 n = 0 n = 0
 Baseline2.39 (1.44-5.89)2.39 (1.44-5.89)
 Last assessment1.13 (0.44-4.44)1.13 (0.44-4.44)
Morning serum cortisol, × ULN n = 30 n = 23 n = 5 n = 2
 Baseline 1.15 (0.19-4.38) 1.16 (0.19-1.88) 0.83 (0.39-2.76) 2.91 (1.43-4.38)
 Last assessment 0.67 (0.02-2.76) 0.68 (0.19-1.87) 0.61 (0.05-2.76) 0.47 (0.02-0.93)
Results are based on patients with both baseline and postosilodrostat prescription data available.
Abbreviations: CS, Cushing syndrome; EAS, ectopic adrenocorticotropin syndrome; LNSC, late-night salivary cortisol; UFC, urinary free cortisol; ULN, upper limit of normal.
The effect of osilodrostat on UFC and morning serum cortisol levels in individual patients with adrenal CS or EAS and available data are shown in Fig. 2A and 2C, respectively. In patients with adrenal CS, UFC levels were reduced in the 2 patients with data available, and morning serum cortisol levels were reduced in 2 of 5 patients with data available. In patients with EAS, there were substantial reductions both in UFC and morning serum cortisol (n = 2).
The time course of cortisol changes and corresponding osilodrostat doses in 2 patients with Cushing disease and 2 patients with EAS are illustrated in Fig. 3.
Individual osilodrostat dosing, UFC, and serum cortisol levels during the study period in illustrative patients. ULN for UFC was 50 μg/24 hours for patients 11, 4, and 1 and 42 μg/24 hours for patient 2. *ULN for serum cortisol was not provided for this patient, so it was estimated to be approximately 18 µg/dL.
Figure 3.Individual osilodrostat dosing, UFC, and serum cortisol levels during the study period in illustrative patients. ULN for UFC was 50 μg/24 hours for patients 11, 4, and 1 and 42 μg/24 hours for patient 2. *ULN for serum cortisol was not provided for this patient, so it was estimated to be approximately 18 µg/dL.
Open in new tabDownload slide
Abbreviations: BID, twice daily; EAS, ectopic adrenocorticotropin syndrome; UFC, urinary free cortisol; ULN, upper limit of normal.
Safety and Tolerability
Overall, 29 patients (69.0%) had an AE reported. The most common AEs (incidence ≥20%) were fatigue, nausea, and lower-extremity edema (Table 5).
Table 5.Open in new tabAdverse events reported during osilodrostat treatment (overall patient population)a
AE, n (%) n = 42a
Any AE 29 (69.0)
Fatigue 23 (54.8)
Nausea 12 (28.6)
Lower-extremity edema 11 (26.2)
Headache 6 (14.3)
Dizziness 6 (14.3)
Hypokalemia 6 (14.3)
Alopecia 4 (9.5)
Vomiting 3 (7.1)
Hypotension 2 (4.8)
Hyperkalemia 1 (2.4)
Prolonged QT interval on electrocardiogram 1 (2.4)
Abbreviation: AE, adverse event.
aIncludes 2 patients who had no postinitiation interaction before study end.
According to the events reported by the investigators, 13 patients had GWS (n = 3), AI (n = 3), or both (n = 7). Of these, osilodrostat treatment was interrupted in 3 patients, the dose was decreased in 2 patients, and there was no change in dose in 4 patients; in the remaining 4 patients, osilodrostat treatment was discontinued. Glucocorticoid use was reported in 4 patients overall; this included 2 patients in whom AI and/or GWS were reported. The first patient reported to have AI and GWS by the investigator was prescribed hydrocortisone 5 mg twice daily for 2 weeks. The second patient (AI) was also prescribed hydrocortisone at a dose of 20 mg/day (duration not specified).
On author adjudication, using the criteria outlined in “Materials and Methods,” 1 case of AI was reclassified as GWS and 5 cases reported to be both GWS and AI by the investigator were reclassified as AI only. Another case of AI was excluded as the symptoms of AI had started before initiation of osilodrostat; this patient had been treated with pasireotide in the 5 months before starting osilodrostat. Thus, the number of author-adjudicated cases during osilodrostat treatment was 12: 4 for GWS, 6 for AI, and 2 for both (ie, patients experiencing ≥1 distinct episode of GWS and AI).
To illustrate different presentations and management practices of AI and GWS, we describe details regarding individual cases. In 1 patient with GWS, symptoms were dizziness, nausea, and fatigue, with serum cortisol levels remaining above 10 µg/dL (276 nmol/L). The symptoms occurred early in the course of treatment and were managed by reducing the osilodrostat dose. In another patient with GWS, symptoms occurred after prolonged treatment, and osilodrostat was discontinued. In 2 patients with AI, symptoms were also dizziness, nausea, and fatigue, but serum cortisol levels were less than or equal to 10 µg/dL (≤276 nmol/L). In the first patient, osilodrostat was maintained at the same dose; symptoms resolved and cortisol levels increased slightly, to above 10 µg/dL (276 nmol/L). Treatment was interrupted in the second patient, but further information on the symptoms and cortisol levels were unavailable.
In patients with available data at baseline and last assessment (n = 38), median (minimum-maximum) serum potassium levels were 4.0 (2.6-5.6) and 4.3 (3.7-5.5) mmol/L, respectively. In those who were normokalemic at baseline (n = 30), 2 patients had potassium levels less than the lower limit of normal during osilodrostat treatment; in those who were hypokalemic at baseline (n = 4), 3 patients had potassium levels reverting to normal during treatment. In female patients with available data at baseline and last assessment (n = 4), mean testosterone levels were 1.48 × ULN at baseline and 1.52 × ULN at the last posttreatment assessment.
Discussion
This study evaluated the real-world use of osilodrostat in patients in the United States with CS during the period shortly after osilodrostat was approved by the US Food and Drug Administration for the treatment of adults with Cushing disease for whom pituitary surgery is not an option or has not been curative. The results highlight the importance of selecting a starting dose and titration regimen according to each patient’s circumstances, clinical response, and tolerability, as the dose required to normalize cortisol levels varies between patients and does not appear to depend on baseline levels. Most of the patients in the study (n = 34/42 [81.0%]) had Cushing disease, as expected. In this subgroup, most patients (n = 21/34 [61.8%]) were initiated on the approved starting dose of osilodrostat (2 mg twice daily), but many (n = 11/34 [32.4%]) were started on lower doses. All patients with Cushing disease who were initiated on doses lower than 2 mg twice daily required a dose increase during the study. A dose of 2 mg twice daily was also the most common maintenance dose in those with Cushing disease who reached a maintenance dose: a total of 57.1% remained on 2 mg twice daily, while 28.6% and 14.3% were uptitrated to 4 mg twice daily and 10 mg twice daily, respectively. In phase 3 clinical trials of osilodrostat in patients with Cushing disease (LINC 3 and LINC 4), median (interquartile range) average doses at the end of the extension periods were 7.4 (3.5-13.6) mg/day in LINC 3 and 4.6 (3.7-9.2) mg/day in LINC 4 [9, 11]. In the present study, most patients whose dose was uptitrated required only one dose increase. Mean duration of the titration period in patients with Cushing disease, defined as the period between any osilodrostat dose changes, was 14.8 weeks. In LINC 3 and LINC 4, doses were increased according to UFC levels in the first 12 weeks, after which dose adjustments were permitted during the remainder of the 48-week core period based on efficacy and tolerability [10, 12]. In both trials, starting and final osilodrostat doses were lower in Asian patients with Cushing disease than in non-Asian patients, regardless of body mass index, likely because of differences in bioavailability [24].
In the subgroup of patients with Cushing disease, most of those with UFC and morning serum cortisol levels greater than the ULN at baseline had their levels reduced to normal during treatment (12/16 and 8/15, respectively). Some patients had UFC and morning serum cortisol levels less than the ULN when osilodrostat was initiated, presumably reflecting a switch to osilodrostat from another medical therapy (eg, because of tolerability issues). More than 60% of patients had received one or more medical therapies before starting osilodrostat, but the reasons for stopping these therapies were not collected as part of the study. In patients with normal levels at study baseline, levels remained less than the ULN in 1 of 1 patient for UFC and 6 of 8 patients for morning serum cortisol. Median levels of UFC and morning serum cortisol in the subgroup of patients with Cushing disease decreased to within the normal range during osilodrostat treatment. These real-world results are consistent with those from the 48-week core phases of LINC 3 and LINC 4 [10, 12, 13].
The present study also included a small number of patients with adrenal CS (n = 5) and EAS (n = 3). The starting dose was 2 mg twice daily in all patients with EAS; in patients with adrenal CS, the starting dose was 2 mg twice daily (n = 3), 1 mg twice daily (n = 1), and 1 mg once daily (n = 1). Baseline median UFC, which was higher in the adrenal CS and EAS subgroups than in patients with Cushing disease, decreased during osilodrostat treatment but remained above the ULN. Median morning serum cortisol levels decreased from above to within the normal range in patients with EAS and remained within the normal range in patients with adrenal CS. Notably, baseline levels of morning serum cortisol, mean UFC, or LNSC did not necessarily predict the osilodrostat dose needed for biochemical normalization. Again, these results emphasize the need to individualize the starting dose and titration regimen based on each patient’s clinical circumstances and response to treatment. Differences in the pathophysiology of CS subtypes may also influence decisions about osilodrostat titration; for example, unlike in Cushing disease, ACTH rarely rises during inhibition of cortisol synthesis in EAS, and the rise in ACTH is delayed after cortisol normalization in adrenal CS. The results for the adrenal CS and EAS subgroups in the present study should be interpreted with caution given the small number of patients, and data from individual patients are perhaps more illustrative in this context. Individual UFC and morning serum cortisol levels were reduced in all patients with adrenal CS or EAS except for 2 patients (both with adrenal CS), whose morning serum cortisol levels did not change; in one of these patients, morning serum cortisol was within the normal range at baseline. Data on LNSC levels should also be interpreted with caution given the small number of patients with data available for this parameter.
The safety profile of osilodrostat was similar to that observed in clinical trials [10, 12, 14], with no unexpected safety signals. GWS and AI are recognized as potential side effects of osilodrostat based on its mechanism of action, but they can be difficult to differentiate as many of their symptoms overlap [25]. In the present study, there were 12 cases of GWS and/or AI after initiation of osilodrostat (28.6% of patients); this rate is lower than in the LINC 3 clinical trial (54.0% of patients with hypocortisolism-related AEs) [9] and similar to that seen in LINC 4 (27.4%) [11]. In LINC 3 and LINC 4, most hypocortisolism-related AEs were classified by the investigator as AI [11], but further evaluation to differentiate between this and GWS was not possible. For the present study, we were able to evaluate the symptoms and biochemical changes associated with these AEs, and we confirmed that it was often not possible for clinicians to accurately distinguish GWS and AI based on symptoms alone. As GWS and AI may require different management approaches, measurement of serum cortisol levels is essential to help guide the management strategy in these cases. In the present study, most cases of GWS and AI were managed by reducing the dose or temporarily interrupting treatment, which is consistent with the results from LINC 3 and LINC 4 [9-12]; only 4 patients (9.5%) with AI or GWS in the present study had discontinued treatment as a result. Treatment with glucocorticoids was recorded in 2 patients; the timing of treatment indicates that glucocorticoids were used to treat the symptoms of AI/GWS rather than as part of a “block-and-replace” strategy, in which glucocorticoids are administered concomitantly with osilodrostat [21, 26]. Slower dose escalation may reduce the risk of hypocortisolism-related AEs; the longer titration interval in LINC 4 (every 3 weeks) than in LINC 3 (every 2 weeks) may explain the lower incidence of hypocortisolism-related AEs during LINC 4 [10, 12]. Regardless, and as with all steroidogenesis inhibitors, all patients treated with osilodrostat should be monitored regularly and educated on the signs and symptoms of GWS and AI. Case reports have described rare episodes of delayed cortisol reduction during chronic osilodrostat therapy and prolonged AI after its discontinuation, which emphasizes the importance of lifelong, close monitoring of symptoms and serum cortisol levels [27-29].
The results of the present study are consistent with those of previous studies demonstrating the efficacy and safety of osilodrostat in patients with EAS or adrenal CS. In a prospective phase 2 study conducted in Japan, mean UFC levels decreased in all patients and normalized in most following 12 weeks of treatment [14]. In LINC 7, a retrospective study conducted in France, 103 patients with adrenal CS or EAS were followed up retrospectively for up to 36 months; at last assessment, mean UFC was normalized in most patients [30]. Compared with LINC 7, the starting and maintenance doses of osilodrostat were lower in the present study, once again emphasizing the importance of individualizing osilodrostat dosing. In a second real-world study in France, which was conducted in 30 patients with EAS, median UFC decreased significantly following osilodrostat monotherapy (when used both first and second line) and combination therapy with other cortisol-lowering drugs [21]. There were also substantial improvements in hypertension, hyperglycemia, and hypokalemia, allowing the discontinuation or dose reduction of concomitant treatments. Several other case series and case reports have documented effective control of cortisol levels and good tolerability in patients with adrenal CS or EAS [26, 31-38], adding to the body of evidence supporting the use of osilodrostat in patients with CS irrespective of severity and etiology.
Limitations of the present study include the small patient numbers, particularly in the groups with adrenal CS and EAS. As the study was conducted shortly after osilodrostat was approved in the United States for patients with Cushing disease for whom pituitary surgery is not an option or has not been curative, the predominance of patients with Cushing disease was expected, albeit slightly higher (81%) than the overall prevalence of Cushing disease (up to 70%), vs other causes of CS in a clinical setting [2]. Another limitation is that data were extracted retrospectively from patients’ medical records rather than recorded prospectively according to a study protocol; this resulted in many missing data points, especially for laboratory data. Despite these limitations, the results provide invaluable information on the real-world use of osilodrostat in the United States, for which data are currently lacking. The design of the study also allowed adjudication of AI vs GWS events by the authors in some patients as morning cortisol levels were available. In addition, ILLUSTRATE is the only completed multicenter study in the United States to date that evaluates the effect of osilodrostat not only in Cushing disease, but also in adrenal CS and EAS, providing data on the cortisol-lowering effectiveness of osilodrostat across the spectrum of hypercortisolism etiologies.
Conclusions
Results of this real-world study are consistent with those from clinical trials and other real-world studies, showing that osilodrostat was effective and well tolerated in patients with varying etiologies and severities of CS when used by physicians in routine clinical practice. The results also highlight the importance of individualizing the osilodrostat dose and titration regimen according to each patient’s clinical condition, response, and tolerability.
Acknowledgments
We thank all clinicians and patients who participated in the study.
Funding
This work was supported by Recordati Rare Diseases Inc, Bridgewater, New Jersey, United States. AMICULUM provided medical editorial assistance, funded by Recordati Rare Diseases Inc.
Disclosures
M.F. reports grants to her university from Crinetics and Sparrow and occasional scientific consulting fees from Crinetics, Recordati Rare Diseases, Sparrow, and Xeris Pharmaceuticals; she served as a member of the LINC 3 steering committee. R.J.A. reports grants and personal fees from Xeris Pharmaceuticals, Spruce Biosciences, Neurocrine Biosciences, Corcept Therapeutics, Diurnal Ltd, Sparrow Pharmaceuticals, Crinetics Pharmaceuticals, and Recordati Rare Diseases and personal fees from Adrenas Therapeutics, Quest Diagnostics, H Lundbeck A/S, Novo Nordisk, and Besins Pharmaceuticals. W.H. reports grants to his institution from CinCor, Corcept, Crinetics, Spruce, and Ascendis and honoraria from Novo Nordisk, Recordati Rare Diseases, Chiesi, Crinetics, Neurocrine, Camurus, and Spruce. J.L.S.-S. reports research grants from Recordati Rare Diseases and scientific consulting fees from Crinetics, Recordati Rare Diseases, and Corcept. K.C.J.Y. reports grants to his institution from Corcept, Sparrow, Chiesi, and Ascendis and honoraria from Novo Nordisk, Ascendis, Chiesi, Recordati Rare Diseases, Xeris, Crinetics, Camurus, and Neurocrine. K.C.D. and J.P. are employees of Recordati Rare Diseases Inc. E.K.B. was an employee of Recordati Rare Diseases Inc at the time the study was conducted (current affiliation: Inizio Engage, Yardley, Pennsylvania, USA). A.K.D., C.C., and M.S.B. are employees of PHAR, which received funding from Recordati Rare Diseases Inc to conduct the analysis. A.G.I. reports grants to her university from Recordati Rare Disease, Xeris Pharmaceuticals, and Chiesi and occasional consulting fees from Xeris Pharmaceuticals, Crinetics, Camurus, and Chiesi.
Data Availability
Some data sets generated and/or analyzed during the present study are not publicly available but are available from the corresponding author on reasonable request.
References
1 Fleseriu   M, Varlamov   EV, Hinojosa-Amaya   JM, Langlois   F, Melmed   S. An individualized approach to the management of Cushing disease. Nat Rev Endocrinol. 2023;19(10):581‐599.
Google ScholarCrossrefPubMedWorldCat
2 Gadelha   M, Gatto   F, Wildemberg   LE, Fleseriu   M. Cushing’s syndrome. Lancet. 2023;402(10418):2237‐2252.
Google ScholarCrossrefPubMedWorldCat
3 Braun   LT, Vogel   F, Reincke   M. Long-term morbidity and mortality in patients with Cushing’s syndrome. J Neuroendocrinol. 2022;34(8):e13113.
Google ScholarCrossrefPubMedWorldCat
4 Reincke   M, Fleseriu   M. Cushing syndrome: a review. JAMA. 2023;330(2):170‐181.
Google ScholarCrossrefPubMedWorldCat
5 Mondin   A, Ceccato   F, Voltan   G, et al.  Complications and mortality of Cushing’s disease: report on data collected over a 20-year period at a referral centre. Pituitary. 2023;26(5):551‐560.
Google ScholarCrossrefPubMedWorldCat
6 Rudman   Y, Fleseriu   M, Dery   L, et al.  Endogenous Cushing’s syndrome and cancer risk. Eur J Endocrinol. 2024;191(2):223‐231.
Google ScholarCrossrefPubMedWorldCat
7 Wu   WC, Wu   JL, Huang   TS, Li   CY, Li   HY. Cushing’s syndrome is associated with a higher risk of cancer—a nationwide cohort study. J Clin Endocrinol Metab. Published online June 13, 2024. Doi:10.1210/clinem/dgae405
WorldCatCrossref
8 Creemers   SG, Feelders   RA, de Jong   FH, et al.  Osilodrostat is a potential novel steroidogenesis inhibitor for the treatment of Cushing syndrome: an in vitro study. J Clin Endocrinol Metab. 2019;104(8):3437‐3449.
Google ScholarCrossrefPubMedWorldCat
9 Fleseriu   M, Newell-Price   J, Pivonello   R, et al.  Long-term outcomes of osilodrostat in Cushing’s disease: LINC 3 study extension. Eur J Endocrinol. 2022;187(4):531‐541.
Google ScholarCrossrefPubMedWorldCat
10 Gadelha   M, Bex   M, Feelders   RA, et al.  Randomized trial of osilodrostat for the treatment of Cushing disease. J Clin Endocrinol Metab. 2022;107(7):e2882‐e2895.
Google ScholarCrossrefPubMedWorldCat
11 Gadelha   M, Snyder   PJ, Witek   P, et al.  Long-term efficacy and safety of osilodrostat in patients with Cushing’s disease: results from the LINC 4 study extension. Front Endocrinol (Lausanne). 2023;14:1236465.
Google ScholarCrossrefPubMedWorldCat
12 Pivonello   R, Fleseriu   M, Newell-Price   J, et al.  Efficacy and safety of osilodrostat in patients with Cushing’s disease (LINC 3): a multicentre phase III study with a double-blind, randomised withdrawal phase. Lancet Diabetes Endocrinol. 2020;8(9):748‐761.
Google ScholarCrossrefPubMedWorldCat
13 Pivonello   R, Fleseriu   M, Newell-Price   J, et al.  Improvement in clinical features of hypercortisolism during osilodrostat treatment: findings from the phase III LINC 3 trial in Cushing’s disease. J Endocrinol Invest. 2024;47(10):2437‐2448.
Google ScholarCrossrefPubMedWorldCat
14 Tanaka   T, Satoh   F, Ujihara   M, et al.  A multicenter, phase 2 study to evaluate the efficacy and safety of osilodrostat, a new 11β-hydroxylase inhibitor, in Japanese patients with endogenous Cushing’s syndrome other than Cushing’s disease. Endocr J. 2020;67(8):841‐852.
Google ScholarCrossrefPubMedWorldCat
15 Recordati Rare Diseases. Osilodrostat prescribing information. 2023. Accessed September 2024. https://isturisa.com/wp-content/themes/isturisa-patient/dist/pdf/isturisa-prescribing-information.pdf
16 European Medicines Agency. Osilodrostat summary of product characteristics. 2024. Accessed September 2024. https://www.ema.europa.eu/en/documents/product-information/isturisa-epar-product-information_en.pdf
17 Pharmaceuticals and Medical Devices Agency. Isturisa® Japan prescribing information. 2021. Accessed October 2024. https://www.pmda.go.jp/PmdaSearch/iyakuDetail/GeneralList/24990A5
18 Dang   A. Real-world evidence: a primer. Pharmaceut Med. 2023;37(1):25‐36.
Google ScholarPubMedWorldCat
19 Bonnet-Serrano   F, Poirier   J, Vaczlavik   A, et al.  Differences in the spectrum of steroidogenic enzyme inhibition between osilodrostat and metyrapone in ACTH-dependent Cushing syndrome patients. Eur J Endocrinol. 2022;187(2):315‐322.
Google ScholarCrossrefPubMedWorldCat
20 Detomas   M, Altieri   B, Deutschbein   T, Fassnacht   M, Dischinger   U. Metyrapone versus osilodrostat in the short-term therapy of endogenous Cushing’s syndrome: results from a single center cohort study. Front Endocrinol (Lausanne). 2022;13:903545.
Google ScholarCrossrefPubMedWorldCat
21 Dormoy   A, Haissaguerre   M, Vitellius   G, et al.  Efficacy and safety of osilodrostat in paraneoplastic Cushing syndrome: a real-world multicenter study in France. J Clin Endocrinol Metab. 2023;108(6):1475‐1487.
Google ScholarCrossrefPubMedWorldCat
22 Dzialach   L, Sobolewska   J, Respondek   W, Szamotulska   K, Witek   P. Cushing’s disease: long-term effectiveness and safety of osilodrostat in a Polish group of patients with persistent hypercortisolemia in the experience of a single center. Biomedicines. 2023;11(12):3227.
Google ScholarCrossrefPubMedWorldCat
23 US Food and Drug Administration. FDA approves new treatment for adults with Cushing’s disease. 2020. Accessed September 2024. https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-adults-cushings-disease
24 Shimatsu   A, Biller   BM, Fleseriu   M, et al.  Osilodrostat treatment in patients with Cushing’s disease of Asian or non-Asian origin: a pooled analysis of two phase III randomized trials (LINC 3 and LINC 4). Endocr J. 2024;71(12):1103‐1123.
Google ScholarCrossrefPubMedWorldCat
25 He   X, Findling   JW, Auchus   RJ. Glucocorticoid withdrawal syndrome following treatment of endogenous Cushing syndrome. Pituitary. 2022;25(3):393‐403.
Google ScholarCrossrefPubMedWorldCat
26 Hána   V, Brutvan   T, Krausová   A, Kršek   M, Hána   V. Severe Cushing’s syndrome from an ectopic adrenocorticotropic hormone-secreting neuroendocrine tumour treated by osilodrostat. Endocrinol Diabetes Metab Case Rep. 2023;2023(4):23-0076.
Google ScholarPubMedWorldCat
27 Castinetti   F, Amodru   V, Brue   T. Osilodrostat in Cushing’s disease: the risk of delayed adrenal insufficiency should be carefully monitored. Clin Endocrinol (Oxf). 2023;98(4):629‐630.
Google ScholarCrossrefPubMedWorldCat
28 Ferriere   A, Salenave   S, Puerto   M, Young   J, Tabarin   A. Prolonged adrenal insufficiency following discontinuation of osilodrostat treatment for intense hypercortisolism. Eur J Endocrinol. 2024;190(1):L1‐L3.
Google ScholarCrossrefPubMedWorldCat
29 Poirier   J, Bonnet-Serrano   F, Thomeret   L, Bouys   L, Bertherat   J. Prolonged adrenocortical blockade following discontinuation of osilodrostat. Eur J Endocrinol. 2023;188(6):K29‐K32.
Google ScholarCrossrefPubMedWorldCat
30 Tabarin   A, Bertherat   J, Decoudier   B, et al.  Safety and effectiveness of osilodrostat in patients with non-pituitary Cushing’s syndrome: results from the retrospective observational LINC 7 study. ENDO. 2024:poster SAT-671.
31 Amodru   V, Brue   T, Castinetti   F. Synergistic cortisol suppression by ketoconazole-osilodrostat combination therapy. Endocrinol Diabetes Metab Case Rep. 2021;2021:21-0071.
Google ScholarPubMedWorldCat
32 Bessiène   L, Bonnet   F, Tenenbaum   F, et al.  Rapid control of severe ectopic Cushing’s syndrome by oral osilodrostat monotherapy. Eur J Endocrinol. 2021;184(5):L13‐L15.
Google ScholarCrossrefPubMedWorldCat
33 Haissaguerre   M, Puerto   M, Nunes   ML, Tabarin   A. Efficacy and tolerance of osilodrostat in patients with severe Cushing’s syndrome due to non-pituitary cancers. Eur J Endocrinol. 2020;183(4):L7‐L9.
Google ScholarCrossrefPubMedWorldCat
34 Heleno   CT, Hong   SPD, Cho   HG, Kim   MJ, Park   Y, Chae   YK. Cushing’s syndrome in adenocarcinoma of lung responding to osilodrostat. Case Rep Oncol. 2023;16(1):124‐128.
Google ScholarPubMedWorldCat
35 Malik   RB, Ben-Shlomo   A. Adrenal Cushing’s syndrome treated with preoperative osilodrostat and adrenalectomy. AACE Clin Case Rep. 2022;8(6):267‐270.
Google ScholarCrossrefPubMedWorldCat
36 Sawabe   F, Hayafusa   R, Kosugi   R, Ariyasu   H. A case of an ectopic ACTH-producing tumor with adrenal shrinkage during osilodrostat administration. JCEM Case Rep. 2024;2(2):luae008.
Google ScholarCrossrefPubMedWorldCat
37 Stasiak   M, Witek   P, Adamska-Fita   E, Lewiński   A. Response to osilodrostat therapy in adrenal Cushing’s syndrome. Drug Healthc Patient Saf. 2024;16:35‐42.
Google ScholarCrossrefPubMedWorldCat
38 Tabarin   A, Haissaguerre   M, Lassole   H, et al.  Efficacy and tolerance of osilodrostat in patients with Cushing’s syndrome due to adrenocortical carcinomas. Eur J Endocrinol. 2022;186(2):K1‐K4.
Google ScholarCrossrefPubMedWorldCat
Abbreviations
ACTH
adrenocorticotropin
AE
adverse event
AI
adrenal insufficiency
CS
Cushing syndrome
EAS
ectopic adrenocorticotropin syndrome
eCRF
electronic case report form
GWS
glucocorticoid withdrawal syndrome
ILLUSTRATE
osIlodrostat reaL-worLd Utilization Study To Retrospectively Assess paTient Experience
LLN
lower limit of normal
LNSC
late-night salivary cortisol
UFC
urinary free cortisol
ULN
upper limit of normal
© The Author(s) 2025. Published by Oxford University Press on behalf of the Endocrine Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. See the journal About page for additional terms.

Osilodrostat Treatment for Adrenal and Ectopic Cushing Syndrome

Integration of Clinical Studies With Case Presentations

Maria Fleseriu, Richard J Auchus, Irina Bancos, Beverly MK Biller
Journal of the Endocrine Society, Volume 9, Issue 4, April 2025, bvaf027
https://doi.org/10.1210/jendso/bvaf027

Abstract

Although most cases of endogenous Cushing syndrome are caused by a pituitary adenoma (Cushing disease), approximately one-third of patients present with ectopic or adrenal causes.

Surgery is the first-line treatment for most patients with Cushing syndrome; however, medical therapy is an important management option for those who are not eligible for, refuse, or do not respond to surgery.

Clinical experience demonstrating that osilodrostat, an oral 11β-hydroxylase inhibitor, is effective and well tolerated comes predominantly from phase III trials in patients with Cushing disease. Nonetheless, reports of its use in patients with ectopic or adrenal Cushing syndrome are increasing. These data highlight the importance of selecting the most appropriate starting dose and titration frequency while monitoring for adverse events, including those related to hypocortisolism and prolongation of the QT interval, to optimize treatment outcomes. Here we use illustrative case studies to discuss practical considerations for the management of patients with ectopic or adrenal Cushing syndrome and review published data on the use of osilodrostat in these patients.

The case studies show that to achieve the goal of reducing cortisol levels in all etiologies of Cushing syndrome, management should be individualized according to each patient’s disease severity, comorbidities, performance status, and response to treatment. This approach to osilodrostat treatment maximizes the benefits of effective cortisol control, leads to improvements in comorbid conditions, and may ameliorate quality of life for patients across all types and severities of Cushing syndrome.

Read the article

 

From https://www.endocrine.org/journals/journal-of-the-endocrine-society/osilodrostat-treatment-for-adrenal-and-ectopic-cushing-syndrome

Thymic Neuroendocrine Tumor With Metastasis to the Breast Causing Ectopic Cushing’s Syndrome

Ectopic adrenocorticotropic hormone secretion (EAS) is responsible for approximately 10%–18% of Cushing’s syndrome cases. Thymic neuroendocrine tumors (NETs) comprise 5%–16% of EAS; therefore, they are very rare and the data about this particular tumors is scarce.

We present a case of a 34-year-old woman with a rapid onset of severe hypercortisolism in April 2016. After initial treatment with a steroid inhibitor (ketoconazole) and diagnostics including 68Ga DOTA-TATE PET/CT, it was shown to be caused by a small thymic NET.

After a successful surgery and the resolution of all symptoms, there was a recurrence after 5 years of observation caused by a metastasis to the breast, shown in the 68Ga DOTA-TATE PET/CT result and confirmed with a breast biopsy.

Treatment with a steroid inhibitor (metyrapone) and tumor resection were again curative. The last disease relapse appeared 7 years after the initial treatment, with severe hypercortisolism treated with osilodrostat. There was a local recurrence in the mediastinum, and a thoracoscopic surgery was performed with good clinical and biochemical effect.

The patient remains under careful follow-up. Our case stays in accordance with recent literature data, showing that patients with thymic NETs are younger than previously considered and that the severity of hypercortisolism does not correlate with the tumor size. The symptoms of EAS associated with thymic NET may develop rapidly and may be severe as in our case. Nuclear medicine improves the effectiveness of the tumor search, which is crucial in successful EAS therapy. Our case also underlines the need for lifelong monitoring of patients with thymic NETs and EAS.

1 Introduction

Ectopic adrenocorticotropic hormone secretion (EAS) represents between 9% and 18% of adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome (CS) cases (13). The tumors secreting ACTH may occur in many locations and present with different histopathological differentiation, resulting in various clinical outcomes. In the past, most of the EAS cases were associated with small cell lung cancer, characterized by rapid tumor progression and unfavorable prognosis. Recently, well-differentiated neuroendocrine tumors (NETs) from the foregut prevail in the clinical series of EAS, with most common locations in the lungs, thymus, and pancreas (1).

EAS is often associated with severe hypercortisolism. Typical Cushing’s appearance may not be present due to the rapid onset of the disease. Patients with this type of hypercortisolism need urgent treatment because they have the highest mortality of all forms of CS (4). A retrospective review of 43 patients with EAS reported deaths in 27 patients (62.8%) and a median overall survival of 32.2 months. The leading causes of mortality were the progression of primary malignancies and systemic infections; two patients died from pulmonary embolism (5).

Prompt surgical removal of the tumor secreting ACTH is the mainstay of the therapy. However, finding the tumor causing EAS can be challenging due to its small size and variety of locations. Most authors recommend a combination of computed tomography (CT) scanning of the chest, abdomen, and pelvis, with additional magnetic resonance imaging (MRI) of the pituitary, as the first-line examinations (167). However, the sensitivity of standard imaging modalities is suboptimal (8). In the analysis of 231 patients with EAS, cross-sectional imaging revealed the source of ACTH in 52.4% of them at initial evaluation, and another 29% was found during follow-up or due to nuclear medicine functional imaging, while 18.6% remained occult (9). Nuclear medicine improves the sensitivity of conventional radiology in the case of EAS, with the use of 18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT (18F-FDG PET/CT) expected to be useful in identifying EAS tumors with high proliferative activity and 68gallium-labeled somatostatin analogues (68Ga DOTA-TATE) PET/CT with the potential to detect NETs. In the head-to-head comparison, the detection rate of the source of EAS was 75% for 68Ga DOTA-TATE and 60% for 18F-FDG PET/CT, while the highest sensitivity (90%) was achieved when both methods were combined (10).

Thymic NETs comprise 2%–5% of all thymic neoplasms and may cause some paraneoplastic syndromes, with the most frequent being myasthenia gravis, syndrome of inappropriate antidiuretic hormone secretion, and hypercortisolism (11). EAS associated with thymic NETs are rare, representing between 5% and 16% of EAS in published case series (1). Because of the rarity and heterogeneity of the disease, no evidence-based guidelines are available.

We present a case of a patient with thymic NET causing EAS, with metastasis to the breast after 5 years of post-surgical remission and another local recurrence 7 years after the first operation.

Our case is unique because thymic NETs causing EAS are known as an aggressive disease with a median recurrence time of 24 months after thymectomy (12). There are only a few cases described of metastases to the breast from thymic NETs causing EAS (1316). Moreover, 68Ga-SSTR PET/CT was very helpful in detecting both primary and metastatic ectopic ACTH-secreting tumor, which underlines its role in the diagnostic workout of EAS.

2 Case description

A 32-year-old woman with no relevant medical history was admitted to the endocrinology department in April 2016 due to the rapid onset of symptoms: weight gain, hypertension, skin changes, and oligomenorrhoea.

The measurements at initial physical examination were as follows: body mass index (BMI)—29 kg/m2, blood pressure—180/90 mmHg, and heart rate—88/min. She had plethora, acne, moon face, buffalo hump, central obesity, many red striae in the abdominal area, and mild hirsutism. The baseline laboratory findings are presented in Table 1, with hypokalemia, diabetes, leukocytosis, high levels of serum cortisol, ACTH, and chromogranin A, and increased urine-free cortisol (UFC) secretion. There was no suppression of serum cortisol or UFC after a high-dose dexamethasone test. ACTH-dependent CS was diagnosed, and EAS was suspected. The patient’s family history was negative for endocrine diseases or genetic disorders.

Table 1

www.frontiersin.org

Table 1. Laboratory results at diagnosis (April 2016).

The first-line cross-sectional imaging studies (chest, abdomen, and pelvis CT and MRI of the pituitary gland) did not reveal the source of ACTH. Only a symmetrical enlargement of adrenals was observed. 68Ga DOTA-TATE PET/CT revealed an oval lesion in the anterior mediastinum (1.9 × 1.3 cm) with a subtle overexpression of somatostatin receptors (SUV max. 2.8, Figures 1A, B). The chest MRI confirmed a mass 1.5 × 2.0 × 2.5 cm, with high T2-weighted signal and high contrast enhancement, suggestive of NET. The patient was given ketoconazole (600 mg daily), spironolactone, potassium supplementation, antihypertensive drugs, and thromboembolic prophylaxis. In June 2016, thoracoscopic removal of the mediastinal tumor was performed. In the histopathological examination, the tumor was encapsulated, without evidence of invasion, and no lymph node metastases were described. The immunophenotype of the tumor was as follows: CgA (+), Syn (+), CKAE1+E3 (+) “dot-like”, S100 (-), calcitonin (-), EMA (+/-), Ki67 3% to 4% in hot spots, no necrosis, mitotic index 0/10HPF with conclusion: thymic NET—typical carcinoid (low-grade). The presence of paraganglioma was also taken into consideration, as such cases were described (17). However, the significant reaction with cytokeratin and lack of S100 protein expression made this diagnosis less probable.

Figure 1

www.frontiersin.org

Figure 168Ga-DOTATATE PET/CT scans. (A, B) Before the first surgery (April 2016). (C, D) Before the second surgery (May 2021). (E, F) Before the third surgery (January 2023).

The postoperative morning serum cortisol concentration was below 5 µg/dL, indicating biochemical remission. The patient received hydrocortisone substitution for a month. The clinical signs of CS disappeared, and there was a normalization of UFC.

During 5 years of follow-up, the patient got pregnant and delivered a healthy child. Genetic counseling was performed, and no germline mutation of MEN1 gene was identified. Other clinical manifestations of MEN1 (like primary hyperparathyroidism and pituitary secreting tumors) were excluded.

In May 2021, the patient experienced a sudden recurrence of CS symptoms. The laboratory findings confirmed severe hypercortisolism (Table 2); therefore, treatment with steroid inhibitor metyrapone was administered. The patient tolerated only 750 mg daily; there were side effects (skin rash and tachycardia) with higher doses. The chest MRI revealed no recurrence in the location of the primary tumor, only a lesion in the right breast (1.2 × 1.0 × 1.1 cm) with atypical contrast enhancement. The 68Ga-DOTA-TATE PET/CT result showed a subtle overexpression of the tracer (SUV max 1.9) in the right breast (Figures 1C, D). Breast ultrasonography confirmed a hypoechogenic, hypervascular mass in the right breast, BIRADS 3/4, diagnosed as NET in the breast biopsy. The tumor was removed in July 2021 without complications. The histopathological samples were compared with the primary lesion, confirming the metastasis from thymic NET to the breast—tumor size 0.7 × 1.5 cm, clear surgical margins (8 mm) with Ki67 3% (NET G2), and no lymph node metastases. After the breast surgery, the cortisol levels normalized in blood and urine and the CS symptoms disappeared. 18F-FDG PET/CT and 68Ga-DOTA-TATE PET/CT were performed, showing no pathological increase of radiotracer uptake in post-operative locations or mediastinal lymph nodes. The patient consulted with the oncology team, and no adjuvant therapy was recommended.

Table 2

www.frontiersin.org

Table 2. Laboratory results during 7 years of observation.

The next recurrence of the disease occurred in February 2023, with the symptoms developing suddenly during a very short period (1 to 2 weeks), additionally with significant mental deterioration (concentration disorders, anxiety, severe mood swing). The laboratory findings confirmed excessive hypercortisolism (Table 2). The patient was given osilodrostat (the initial dose was 20 mg daily but later reduced to 10 mg daily for 2 weeks until surgery) and symptomatic treatment with good clinical and biochemical effect. The 68Ga-DOTA-TATE PET/CT result showed a slightly increased uptake of the tracer in the left mediastinum, between cervical vessels, 0.9 × 1.2 cm (Figures 1E, F)—probably a local recurrence. Thoracotomy was performed in February 2023, with subsequent clinical and biochemical improvement (Table 2). In the histopathological examination, mediastinal NET G1 was diagnosed, without necrosis, mitotic activity 0/2 mm2, immunophenotype CgA (+), CD56 (+), Ki 67 1%, CK AE1/AE3 (+), CD117 (+), p40 (-), TdT (-), PAX8 (-), and the presence of tumor cell embolism in the vessels. One metastatic lesion was found in the pericardium (the maximal dimension of the tissue was 13 mm, resected radically). Two metastatic lesions in the fat tissue were found (one tissue fragment from the mediastinum, max. 16 mm diameter, and the second tissue fragment was surrounding the jugular vein, max. diameter up to 40 mm, both resected radically). Two of the 10 resected lymph nodes had metastatic lesions: one from the area of the jugular vein, diameter 11 mm, with capsular invasion, and the second lymph node N2R with capsular invasion, both resected radically. The symptoms of hypercortisolism disappeared, and the cortisol values were normalized after the operation. The patient is currently under careful monitoring, without signs of clinical or biochemical recurrence. 68Ga-DOTA-TATE PET/CT is performed every 6 months.

3 Discussion

Our case is representative for thymic NETs causing EAS presented in literature, but it also shows some distinct features, giving new insight into this rare condition.

In recent series, ACTH-secreting thymic NETs occurred often in young adults, like our patient. The typical age of presentation is 21–35 years in the largest case series, and 7.4% were children under 15 years (1213). In contrast, the former series of thymic NETs showed a peak incidence in the sixth decade of life (11).

ACTH-secreting thymic NETs show a slight male preponderance (58.6%); however, the patient’s gender does not seem to relate with the disease outcome (12). There was only an association between male sex and larger tumor size preoperatively as found in one case series (13).

Thymic NETs causing EAS are very rarely associated with MEN1; we have also excluded it in our patient. On the contrary, 30% of thymic NETs not associated with CS are found in patients with MEN1, mostly male smokers (18). It is not clear why thymic NETs with EAS are less likely caused by MEN1 gene mutation, but the possibility of this genetic predisposition should always be taken into consideration.

Thymic NETs associated with EAS are generally considered aggressive, presenting significant cellular atypia in the histopathological examination (19). However, the biology of the tumors is variable. In the histopathological examination of 92 thymic NETs secreting ACTH, the most common subtype was atypical NET (46.7%), while 30.4% of the cases were typical NETs and 21.7% were carcinomas, with the median Ki-67 10%, ranging from 1% to 40%. The median tumor size among 112 patients was 4.7 cm, ranging from 1 to 20 cm, and 55.7% of patients had metastases at presentation (12). It proves the significant heterogeneity of the disease.

Our patient had typical NET with small dimensions and localized disease at the time of diagnosis. Despite this, we observed aggressive Cushing’s syndrome with a short duration of symptoms and life-threatening hypokalemia. It has been observed that there is no correlation between tumor size and hormone levels (12). Thymic NETs associated with EAS are often large, which simplifies the diagnosis and localization. However, in the case of incidental sellar mass or small thymic tumor, the differential diagnosis might be difficult. The highest sensitivity in distinguishing thymic EAS from Cushing’s disease was documented in inferior petrosal sinus sampling and corticotropin-releasing hormone (CRH) stimulation test (1220).

In severe cases, when small ACTH-secreting NET needs to be found urgently, PET/CT is a very helpful diagnostic tool. In a prospective study comprising 20 patients with histologically proven EAS, the 68Ga-DOTATATE PET/CT result correctly identified the tumor in 75%, with SUV max. ranging from 1.4 to 20.7, while the 18F-FDG PET/CT findings had a slightly worse result (identified 60% tumors), with SUV max. ranging from 1.8 to 10.0. Those methods are believed to be complementary in case of localization and discrimination of EAS. The 68Ga-DOTATATE PET/CT result revealed tumor in six cases with a negative 18F-FDG PET/CT result, while the 18F-FDG PET/CT procedure was diagnostic in three cases with a negative 68Ga-DOTATATE uptake; the combined sensitivity of both methods was 90% (10). The typical first-line diagnostic modalities’ (CT and MRI) sensitivities range from 52% to 66% (9). Our case remains in accordance with those results, showing difficulties in localizing the ACTH source in first-line radiological methods and with 68Ga-DOTATATE PET/CT being the most useful diagnostic tool. It should also be noted that the 68Ga-DOTATATE uptake was only mildly elevated both in primary tumor and its recurrences despite excessive hormonal activity. We did not perform 18F-FDG PET/CT until second operation, as it was believed to be rather helpful in poorly differentiated tumors and 68Ga-DOTATATE PET/CT was diagnostic. Later, we performed it in search for other metastatic tumors, but the examination showed no tumor spread.

The recommended treatment of thymic NETs regarded radically resectable is thymectomy by median sternotomy or thoracotomy and lymph node dissection (112122). According to the last version of the ESMO Guidelines, available literature suggests no benefit from adjuvant therapy in ThCs. The majority of the authors of the Guidelines panel suggest individually discussing eventual postoperative therapies, including RT and/or systemic therapies, balancing the pros and cons only in selected patients with advanced stage R0 or R1-2 resection (22). Data on systemic therapies in thymic NETs are scarce; therefore, they should be discussed in a multidisciplinary expert team in case of morphologically progressive tumors, high tumor burden, or refractory hormonal syndromes. Somatostatin analogs are recommended as the first-line systemic therapy in typical carcinoids (22). We considered the adjuvant therapy with somatostatin analogs; however, due to the low uptake in PET examination and complete resolution of symptoms as well as the radical type of surgical removal, we did not decide to initiate such therapy. Other systemic treatment options include everolimus (second line in typical carcinoids or first line in atypical carcinoids), chemotherapy, peptide receptor radionuclide therapy (PRRT), and interferon-α (2223). There is also data on the benefits of combining long-acting lanreotide with temozolomide in progressive thymic NETs (24).

Due to the variable availability of steroid inhibitors during the course of the disease, our patient received three different preparations at each disease relapse. Both ketoconazole and osilodrostat were well tolerated and reduced the hypercortisolism within a few days, but metyrapone caused significant side effects (see below—”Patient’s perspective”), and it was not possible to normalize the cortisol values with this steroid inhibitor. It is worth noting that when using the most recent steroid inhibitor—osilodrostat—we initiated the therapy with a high dose without a previous dose titration. This strategy might be used in the case of severe hypercortisolism and proved effective and safe in our patient (25).

Most commonly, metastases from thymic NET producing ACTH are localized in lymph nodes, bone, lung, pleura, and, less commonly, liver and parotid gland (13). There are very few cases of EAS-related thymic NETs with breast metastases described in the literature, with some histopathological variability (one case related to atypical carcinoid, another to combined large-cell neuroendocrine carcinoma and atypical carcinoid, and third case of neuroendocrine carcinoma). All of them were female patients between 24 and 36 years of age, with mediastinal lymph nodes metastases at the time of presentation; one also had distant metastases to the bones (1315). Contrary to the reported cases, our patient had typical carcinoid (confirmed by three independent pathologists from different centers) but similarly presented with severe hypercortisolism. It suggests that there is no connection between tumor differentiation and the severity of hypercortisolism. Interestingly, in a review of 661 patients with metastatic NETs from Sweden, there were 20 patients with NETs and breast metastases, and among them only one case of thymic NET (Ki 67 12%), but without EAS. A total of 11 patients with breast metastases had a primary tumor in the small intestine and eight in the lung (16).

Our case underlines the necessity of long-term follow-up in EAS, as the recurrences occurred 5 and 7 years after the initial successful treatment. According to guidelines, follow-up after treatment of thymic NETs should be life-long (22).

The strength of our report is the presentation of a thymic NET with metastasis to the breast, diagnosed and treated with many currently available tools and with a long period of follow-up. The limitation is the low number of other similar cases to compare, which is a consequence of the rarity of this disease.

In conclusion, our case proves that thymic NETs with EAS might present in young patients with well-differentiated character in histopathological examination and severe, life-threatening hypercortisolism despite the small size of the primary lesion. 68Ga-DOTATATE PET/CT is a very helpful tool to localize the tumor. Finally, life-long follow-up should be performed despite complete remission after surgery.

4 Patient’s perspective

The first symptoms that I observed were face edema and mood changes. I rapidly lost muscle mass (approximately 6 kg in 2 weeks), and I was not able to climb stairs, especially with my child’s pram. The most difficult to accept were changes in my appearances—hirsutism, losing hair, changes of my facial features. My sense of pain (for example, during medical procedures) was diminished. Other disruptive symptoms were intensive sweating, increased appetite, thirst, brain fog, and digestive problems. At every relapse, the disease manifestations were fluctuating, all of them intensifying at the same time, which was very difficult for me. Also stress evoked disease symptoms. I experienced a strange feeling of warm during cortisol outbursts.

As for the treatment, I did not tolerate metyrapone well. I had skin rash, anxiety attacks with heart palpitations, and a metallic taste in my mouth. Other drugs (ketoconazole, osilodrostat) were better for me.

After operations of the relapses, the symptoms diminished very quickly, especially the most difficult ones. My blood pressure and glycemia normalized within a few days. Other manifestations, like loss of hair or skin changes, persisted up to 3 months.

Data availability statement

The datasets presented in this article are not readily available because the data are potentially identifiable. Requests to access the datasets should be directed to Aleksandra Zdrojowy-Wełna, aleksandra.zdrojowy-welna@umw.edu.pl.

Ethics statement

This study was exempt from ethical approval procedures being a case report of a single patient who has voluntarily provided oral and written consent to participate in the study and to have her case published for the sake of helping us better understand the clinical picture and the course of thymic neuroendocrine tumors with EAS and share it with the medical community for awareness about it. Written informed consent was obtained from the participant/patient(s) for the publication of this case report.

Author contributions

AZ-W: Conceptualization, Data curation, Investigation, Methodology, Software, Writing – original draft. MB: Conceptualization, Supervision, Writing – review & editing. JS: Data curation, Investigation, Methodology, Writing – review & editing. AJ-P: Data curation, Investigation, Writing – review & editing. JK-P: Conceptualization, Data curation, Investigation, Methodology, Supervision, Writing – original draft.

Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Acknowledgments

We would like to thank Prof. Barbara Górnicka and Prof. Michał Jeleń for their collaboration throughout the patient’s treatment.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor AJ declared a past co-authorship with the author MB.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

 

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1492187/full#supplementary-material

References

1. Young J, Haissaguerre M, Viera-Pinto O, Chabre O, Baudin E, Tabarin A. Management of endocrine disease: Cushing’s syndrome due to ectopic ACTH secretion: an expert operational opinion. Eur J Endocrinol. (2020) 182:29–58. doi: 10.1530/EJE-19-0877

PubMed Abstract | Crossref Full Text | Google Scholar

2. Feelders R, Sharma S, Nieman L. Cushing`s syndrome: epidemiology and developments in disease management. Clin Epidemiol. (2015) 7:281–93. doi: 10.2147/CLEP.S44336

PubMed Abstract | Crossref Full Text | Google Scholar

3. Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet Lond Engl. (2015) 386:913–27. doi: 10.1016/S0140-6736(14)61375-1

PubMed Abstract | Crossref Full Text | Google Scholar

4. Javanmard P, Duan D, Geer EB. Mortality in patients with endogenous cushing’s syndrome. Endocrinol Metab Clin North Am. (2018) 47:313–33. doi: 10.1016/j.ecl.2018.02.005

PubMed Abstract | Crossref Full Text | Google Scholar

5. Ejaz S, Vassilopoulou-Sellin R, Busaidy NL, Hu MI, Waguespack SG, Jimenez C, et al. Cushing syndrome secondary to ectopic adrenocorticotropic hormone secretion: the University of Texas MD Anderson Cancer Center Experience. Cancer. (2011) 117:4381–9. doi: 10.1002/cncr.v117.19

PubMed Abstract | Crossref Full Text | Google Scholar

6. Sookur PA, Sahdev A, Rockall AG, Isidori AM, Monson JP, Grossman AB, et al. Imaging in covert ectopic ACTH secretion: a CT pictorial review. Eur Radiol. (2009) 19:1069–78. doi: 10.1007/s00330-008-1274-5

PubMed Abstract | Crossref Full Text | Google Scholar

7. Yogi-Morren D, Habra MA, Faiman C, Bena J, Hatipoglu B, Kennedy L, et al. Pituitary MRI findings in patients with pituitary and ectopic ACTH-dependent cushing syndrome: does A 6- mm pituitary tumor size cut-off value exclude ectopic acth syndrome? Endocr Pract. (2015) 21:1098–103. doi: 10.4158/EP15662.OR

PubMed Abstract | Crossref Full Text | Google Scholar

8. Ilias I, Torpy DJ, Pacak K, Mullen N, Wesley RA, Nieman LK. Cushing’s syndrome due to ectopic corticotropin secretion: twenty years’ Experience at the national institutes of health. J Clin Endocrinol Metab. (2005) 90:4955–62. doi: 10.1210/jc.2004-2527

PubMed Abstract | Crossref Full Text | Google Scholar

9. Isidori AM, Sbardella E, Zatelli MC, Boschetti M, Vitale G, Colao A, et al. Conventional and nuclear medicine imaging in ectopic cushing’s syndrome: A systematic review. J Clin Endocrinol Metab. (2015) 100:3231–44. doi: 10.1210/JC.2015-1589

PubMed Abstract | Crossref Full Text | Google Scholar

10. Liu Q, Zang J, Yang Y, Ling Q, Wu H, Wang P, et al. Head-to-head comparison of 68Ga- DOTATATE PET/CT and 18F-FDG PET/CT in localizing tumors with ectopic adrenocorticotropic hormone secretion: a prospective study. Eur J Nucl Med Mol Imaging. (2021) 48:4386–95. doi: 10.1007/s00259-021-05370-8

PubMed Abstract | Crossref Full Text | Google Scholar

11. Gaur P, Leary C, Yao JC. Thymic neuroendocrine tumors: a SEER database analysis of 160 patients. Ann Surg. (2010) 251:1117–21. doi: 10.1097/SLA.0b013e3181dd4ec4

PubMed Abstract | Crossref Full Text | Google Scholar

12. Guerrero-Pérez F, Peiró I, Marengo AP, Teulé A, Ruffinelli JC, Llatjos R, et al. Ectopic Cushing’s syndrome due to thymic neuroendocrine tumours: a systematic review. Rev Endocr Metab Disord. (2021) 22:1041–56. doi: 10.1007/s11154-021-09660-2

PubMed Abstract | Crossref Full Text | Google Scholar

13. Neary NM, Lopez-Chavez A, Abel BS, Boyce AM, Schaub N, Kwong K, et al. Neuroendocrine ACTH-producing tumor of the thymus—Experience with 12 patients over 25 years. J Clin Endocrinol Metab. (2012) 97:2223–30. doi: 10.1210/jc.2011-3355

PubMed Abstract | Crossref Full Text | Google Scholar

14. Dzialach L, Wojciechowska-Luzniak A, Maksymowicz M, Witek P. Case report: A challenging case of severe Cushing’s syndrome in the course of metastatic thymic neuroendocrine carcinoma with a synchronous adrenal tumor. Front Endocrinol. (2024). doi: 10.3389/fendo.2024.1399930/full

PubMed Abstract | Crossref Full Text | Google Scholar

15. Gaur S, Ayyappan AP, Nahleh Z. Breast metastases from an adrenocorticotropic hormone secreting thymic neuro-endocrine tumor. Breast Dis. (2013) 34:81–6. doi: 10.3233/BD-130354

PubMed Abstract | Crossref Full Text | Google Scholar

16. Crona J, Granberg D, Norlén O, Wärnberg F, Stålberg P, Hellman P, et al. Metastases from neuroendocrine tumors to the breast are more common than previously thought. A diagnostic pitfall? World J Surg. (2013) 37:1701–6. doi: 10.1007/s00268-013-2037-2

PubMed Abstract | Crossref Full Text | Google Scholar

17. Li B, Yan Z, Huang H. Case report: an unusual case of ectopic ACTH syndrome caused by mediastinal paraganglioma. Front Endocrinol. (2021) 12:790975. doi: 10.3389/fendo.2021.790975

PubMed Abstract | Crossref Full Text | Google Scholar

18. Ferolla P, Falchetti A, Filosso P, Tomassetti P, Tamburrano G, Avenia N, et al. Thymic neuroendocrine carcinoma (carcinoid) in multiple endocrine neoplasia type 1 syndrome: the Italian series. J Clin Endocrinol Metab. (2005) 90:2603–9. doi: 10.1210/jc.2004-1155

PubMed Abstract | Crossref Full Text | Google Scholar

19. Moran CA, Suster S. Neuroendocrine carcinomas (Carcinoid tumor) of the thymus. Am J Clin Pathol. (2000) 114:100–10. doi: 10.1309/3PDN-PMT5-EQTM-H0CD

PubMed Abstract | Crossref Full Text | Google Scholar

20. Kakade HR, Kasaliwal R, Jagtap VS, Bukan A, Budyal SR, Khare S, et al. Ectopic acth- secreting syndrome: A single-center experience. Endocr Pract. (2013) 19:1007–14. doi: 10.4158/EP13171.OR

PubMed Abstract | Crossref Full Text | Google Scholar

21. Girard N. Neuroendocrine tumors of the thymus: the oncologist point of view. J Thorac Dis. (2017) 9:1491–500. doi: 10.21037/jtd.2017.08.18

PubMed Abstract | Crossref Full Text | Google Scholar

22. Baudin E, Caplin M, Garcia-Carbonero R, Fazio N, Ferolla P, Filosso PL, et al. Lung and thymic carcinoids: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol. (2021) 32:439–51. doi: 10.1016/j.annonc.2021.01.003

PubMed Abstract | Crossref Full Text | Google Scholar

23. Ferolla P, Brizzi MP, Meyer T, Mansoor W, Mazieres J, Do Cao C, et al. Efficacy and safety of long-acting pasireotide or everolimus alone or in combination in patients with advanced carcinoids of the lung and thymus (LUNA): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. (2017) 18:1652–64. doi: 10.1016/S1470-2045(17)30681-2

PubMed Abstract | Crossref Full Text | Google Scholar

24. Ferolla P, Berruti A, Spada F, Brizzi MP, Ibrahim T, Marconcini R, et al. Efficacy and safety of lanreotide autogel and temozolomide combination therapy in progressive thoracic neuroendocrine tumors (Carcinoid): results from the phase 2 ATLANT study. Neuroendocrinology. (2023) 113:332–42. doi: 10.1159/000526811

PubMed Abstract | Crossref Full Text | Google Scholar

25. Fleseriu M, Biller BMK. Treatment of Cushing’s syndrome with osilodrostat: practical applications of recent studies with case examples. Pituitary. (2022) 25:795–809. doi: 10.1007/s11102-022-01268-2

PubMed Abstract | Crossref Full Text | Google Scholar

Keywords: ectopic Cushing`s syndrome, thymic neuroendocrine tumor, thymic NET, ectopic ACTH secretion, case report

Citation: Zdrojowy-Wełna A, Bolanowski M, Syrycka J, Jawiarczyk-Przybyłowska A and Kuliczkowska-Płaksej J (2025) Case Report: Thymic neuroendocrine tumor with metastasis to the breast causing ectopic Cushing’s syndrome. Front. Oncol. 15:1492187. doi: 10.3389/fonc.2025.1492187

Received: 11 September 2024; Accepted: 31 January 2025;
Published: 25 February 2025.

Edited by:

Aleksandra Gilis-Januszewska, Jagiellonian University Medical College, Poland

Reviewed by:

Piero Ferolla, Umbria Regional Cancer Network, Italy
Lukasz Dzialach, Warsaw Medical University, Poland

Copyright © 2025 Zdrojowy-Wełna, Bolanowski, Syrycka, Jawiarczyk-Przybyłowska and Kuliczkowska-Płaksej. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Aleksandra Zdrojowy-Wełna, aleksandra.zdrojowy-welna@umw.edu.pl

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

95% of researchers rate our articles as excellent or good

Learn more about the work of our research integrity team to safeguard the quality of each article we publish.

Find out more

People also looked at

Supplementary Material
  • Data Sheet 1.pdf

Insights on Diagnosing and Managing Cushing’s Syndrome

Cushing’s syndrome, or endogenous hypercortisolemia, is a rare condition that both general practice clinicians and endocrinologists should be prepared to diagnose and treat. Including both the pituitary and adrenal forms of the disease, the Endocrine Society estimates that the disorder affects 10 to 15 people per million every year in the United States. It is more common in women and occurs most often in people between the ages of 20 and 50.

Even though Cushing’s remains a rare disease, cortisol recently made waves at the American Diabetes Association 84th Scientific Session. A highlight of the meeting was the initial presentation of data from the CATALYST trial, which assessed the prevalence of hypercortisolism in patients with difficult-to-control type 2 diabetes (A1c 7.5+).

CATALYST is a prospective, Phase 4 study with two parts. In the prevalence phase, 24% of 1,055 enrolled patients had hypercortisolism, defined as an overnight dexamethasone suppression test (ODST) value greater than 1.8 µg/dL and dexamethasone levels greater than 140 µg/dL. Results of CATALYST’s randomized treatment phase are expected in late 2024.

Elena Christofides, MD, FACE, founder of Endocrinology Associates, Inc., in Columbus, OH, believes the CATALYST results will be a wake-up call for both physicians and patients seeking to advocate for their own health. “This means that nearly 1 in 4 patients with type 2 diabetes have some other underlying hormonal/endocrine dysfunction as the reason for their diabetes, or significant contribution to their diabetes, and they should all be screened,” she said. “All providers need to get comfortable with diagnosing and treating hypercortisolemia, and you need to do it quickly because patients are going to pay attention as well.”

In Dr. Christofides’ experience, patients who suspect they have a hormonal issue may start with their primary care provider or they may self-refer to an endocrinologist. “A lot of Cushing’s patients are getting diagnosed and treated in primary care, which is completely appropriate. But I’ve also met endocrinologists who are uncomfortable diagnosing and managing Cushing’s because it is so rare,” she said. “The important thing is that the physician is comfortable with Cushing’s or is willing to put in the work get comfortable with it.”

According to Dr. Christofides, the widespread popular belief that “adrenal fatigue” is causing millions of Americans to feel sick, tired, and debilitated may be creating barriers to care for people who may actually have Cushing’s. “As physicians, we know that adrenal fatigue doesn’t exist, but we should still be receptive to seeing patients who raise that as a concern,” said Dr. Christofides. “We need to acknowledsalige their lived experience as being very real and it can be any number of diseases causing very real symptoms. If we don’t see these patients, real cases of hypercortisolemia could be left undiagnosed and untreated.”

Dr. Christofides, who also serves as a MedCentral Editor-at-Large, said she reminds colleagues that overnight dexamethasone suppression test (ODST) should always be the first test when you suspect Cushing’s. “While technically a screening test, the ODST can almost be considered diagnostic, depending on how abnormal the result is,” she noted. “But I always recommend that you do the ODST, the ACTH, a.m. cortisol, and the DHEAS levels at the same time because it allows you to differentiate more quickly between pituitary and adrenal problems.”

Dr. Christofides does see a place for 24-hour urine collection and salivary cortisol testing at times when diagnosing and monitoring patients with Cushing’s. “The 24-hour urine is only positive in ACTH-driven Cushing’s, so an abnormal result can help you identify the source, but too many physicians erroneously believe you can’t have Cushing’s if the 24-hour urine is normal,” she explained. “Surgeons tend to want this test before they operate and it’s a good benchmark for resolution of pituitary disease.” She reserves salivary cortisol testing for cases when the patient’s ODST is negative, but she suspects Cushing’s may be either nascent or cyclical.

Surgical resection has long been considered first-line treatment in both the pituitary and adrenal forms of Cushing’s. For example, data shared from Massachusetts General Hospital showed that nearly 90% of patients with microadenomas did not relapse within a 30-year period. A recent study found an overall recurrence rate of about 25% within a 10-year period. When reoperation is necessary, remission is achieved in up to 80% of patients.

As new medications for Cushing’s syndrome have become available, Dr. Christofides said she favors medical intervention prior to surgery. “The best part about medical therapy is you can easily stop it if you’re wrong,” she noted. “I would argue that every patient with confirmed Cushing’s deserves nonsurgical medical management prior to a consideration of surgery to improve their comorbidities and surgical risk management, and give time to have a proper informed consent discussion.”

In general, medications to treat Cushing’s disease rely on either cortisol production blockade or receptor blockade, said Dr. Christofides. Medications that directly limit cortisol production include ketoconazoleosilodrostat (Isturisa), mitotane (Lysodren), levoketoconazole (Recorlev), and metyrapone (Metopirone). Mifepristone (Korlym, Mifeprex) is approved for people with Cushing’s who also have type 2 diabetes to block the effects of cortisol. Mifepristone does not lower the amount of cortisol the body makes but limits its effects. Pasireotide (Signifor) lowers the amount of ACTH from the tumor. Cabergoline is sometimes used off-label in the US for the same purpose.

Following surgery, people with Cushing’s need replacement steroids until their adrenal function resumes, when replacement steroids must be tapered. But Dr. Christofides said she believes that all physicians who prescribe steroids should have a clear understanding of when and how to taper patients off steroids.

“Steroid dosing for therapeutic purposes is cumulative in terms of body exposure and the risk of needing to taper. A single 2-week dose of steroids in a year does not require a taper,” she said. “It’s patients who are getting repeated doses of more than 10 mg of prednisone equivalent per day for 2 or more weeks multiple times per year who are at risk of adrenal failure without tapering.”

Physicians often underestimate how long a safe, comfortable taper can take, per Dr. Christofides. “It takes 6 to 9 months for the adrenals to wake up so if you’re using high-dose steroids more frequently, that will cause the patient to need more steroids more frequently,” she explained. “If you’re treating an illness that responds to steroids and you stop them without tapering, the patient’s disease will flare, and then a month from then to 6 weeks from then you’ll be giving them steroids again, engendering a dependence on steroids by doing so.”

When developing a steroid taper plan for postoperative individuals with Cushing’s (and others), Dr. Christofides suggests basing it on the fact that 5 mg of prednisone or its equivalent is the physiologic dose. “Reduce the dose by 5 mg per month until you get to the last 5 mg, and then you’re going to reduce it by 1 mg monthly until done,” she said. “If a patient has difficulty during that last phase, consider a switch to hydrocortisone because a 1 mg reduction of hydrocortisone at a time may be easier to tolerate.”

Prednisone, hydrocortisone, and the other steroids have different half-lives, so you’ll need to plan accordingly, adds Dr. Christofides. “If you do a slower taper using hydrocortisone, the patient might feel worse than with prednisone unless you prescribe it BID.” She suggests thinking of the daily prednisone equivalent of hydrocortisone as 30 mg to allow for divided dosing, rather than the straight 20 mg/day conversion often used.

What happens after a patient’s Cushing’s has been successfully treated? Cushing’s is a chronic disease, even in remission, Dr. Christofides emphasized. “Once you have achieved remission, my general follow-up is to schedule visits every 6 months to a year with scans and labs, always with the instruction if the patient feels symptomatic, they should come in sooner,” she said.

More on Cushing’s diagnosis and therapies.

https://www.medcentral.com/endocrinology/cushings-syndrome-a-clinical-update