All About the Pituitary Gland

0276f-pituitary-gland

 

The pituitary gland stimulates all the other endocrine glands to produce their own hormones. It produces a number of hormones including Human Growth Hormone (hGH) responsible for bone and muscle growth and Follicle Stimulating Hormone (FSH) which stimulates the production of the female egg or male sperm.  It is found at the base of the brain.
What can happen when it goes wrong?

When the pituitary gland doesn’t produce enough ‘trigger’ hormones, hypopituitarism occurs. Most often, it is caused by a benign tumor of the pituitary gland although it can also be caused by infections, head injury or even stroke.

Symptoms?
Excessive tiredness, reduced fertility, irregular periods, weight gain, poor libido, dry skin and headaches.
Treatment?
If caused by a tumor, surgery will be required to remove it. Regardless of whether this is successful, daily hormones will then be required to replace those no longer produced.

Adapted from http://www.hippocraticpost.com/palliative/whole-story-hormones/

Interview with a Doctor on Trans-Sphenoidal surgery

Dr. Julius July: Neurosurgeon at the Neuroscience Center of Siloam Hospitals Lippo Village Karawaci 

A SIMPLE AND QUICK WAY TO REMOVE TUMORS VIA SURGERY THROUGH THE NOSTRIL

The mention of the word “surgery” evokes images of lengthy and elaborate procedures that involve delicate acts of cutting, abrading or suturing different parts of the body to treat an injury or disease.

This widely-held perception has led some to develop an irrational fear of surgery–especially if an operation involves a critical organ, such as the heart, or in the case of trans-sphenoidal surgery, a procedure used to remove tumors from the hormone-regulating pituitary gland located at the base of the brain.

Though the procedure has been around in different forms for the past three decades, individuals who may be in dire need of it might fear or avoid it.

To demystify this specific method of surgery, J+ spoke with Julius July, a neurosurgeon at the Neuroscience Center of Siloam Hospitals Lippo Village Karawaci. He has performed hundreds of trans-sphenoidal operations on patients throughout the country since 2008. Below is our interview, edited for length and clarity.

Tell us more about trans-sphenoidal surgery.

The goal is to extract benign tumors of the pituitary gland that are called pituitary adenoma. The pituitary gland controls different secretions of hormones. If there is a tumor and it grows large, one of the consequences could be that a patient goes blind. It can also lead to symptoms manifesting in other parts of the body due to excess hormone production, depending on the type of hormone affected by the tumor.

What does a neurosurgeon do during the procedure?

As neurosurgeons we use an endoscope with a camera attached to it and insert the instrument through the nostril. We go through the right nostril and through the sinus to reach the tumor and remove it. Once that is done, we add a coagulant to prevent bleeding. The operation takes only an hour to 90 minutes to perform and is minimally invasive. People come in and expect the surgery to last five or six hours. They hear “surgery” and fearfully assume that. But modern trans-sphenoidal surgery is simple, only lasting one to two hours.

What’s the prognosis after surgery?

In 80 percent of cases, all it takes is one surgery to remove a tumor. However, some need repeated intervention, while others require radiation. Some tumors want to invade their surroundings. In these cases, the surrounding area is a blood vessel. We can’t totally remove that type of tumor. But such cases are rare. If a patient needs more than two operations, we usually recommend radiation, because who wants to have a lot of operations?

What are the symptoms of pituitary adenoma?

Symptoms depend on whether a tumor affects hormone production or the optic nerve. The principal complaints are related to a patient’s field of vision becoming narrower. If there is a tumor in the pituitary gland area, the eye can’t see too widely. The tumors would press on the optic nerve, which leads to the periphery of your vision getting blurry.

If the tumor affects hormone production, the symptoms depend on the specific type of hormone that the tumor has affected. Different hormones have different roles. Excess prolactin hormones can lead to women–or even men–producing breast milk. If a woman who isn’t pregnant is producing breast milk, they need to be checked. The basic ingredient of milk is calcium. Without treatment, the woman will have porous bone problems. It also leads to reduced libido. If men have an excess of these prolactin hormones, they cannot get erections and will become impotent.

How does these problem develop in the first place?

Mutations lead to the creation of these benign tumors. Some things make mutations easier, such as smoking or exposure to radiation or specific chemicals. It could be anything. You could have eaten tofu and it had formalin or some meatballs with borax. Preventing it obviously requires a healthy lifestyle, but that’s easier said than done.

It’s not just one thing that causes these tumors.

Who does this pituitary tumor affect?

It affects both genders equally, more or less. The risk of pituitary adenoma compared to all other types of brain tumors is 15 percent. Children are also affected, though the condition is statistically much more likely to afflict adults. Of my patients, two in 70 would be children.

How is it diagnosed?

The doctor will check your hormones after a blood test and identify the problem. For example, if the condition affects growth hormones, a person can grow to two meters or more in height, which leads to gigantism. Alternatively, a condition could lead to horizontal growth–a bigger tongue, bigger fingers and changing shoes each month. The tongue can become so big that it causes breathing problems. Growth hormone overproduction is like a factory with the machine working overtime. As a result, a person’s life span can get cut in half. The heart works overtime, they keep growing and they die prematurely.

How many operations do you perform a year?

I’ve been doing these operations since 2008. I handle 60 to 70 such surgeries a year.

Any notable success stories to share?

One patient from Central Java came in blind. I examined him and said that there was no way we could save his vision by removing his tumor. He was crying. He had been blind for a week. But if no action was taken, the tumor would keep growing and would lead him to becoming crippled. At the end, he decided that he still wanted the operation. Surprisingly though, after the operation, he was able to see. Three months later, he was driving and reading newspapers. It was a fascinating case.

From http://www.thejakartapost.com/news/2016/07/30/well-being-trans-sphenoidal-surgery.html

Pituitary tissue grown from human stem cells releases hormones in rats

Researchers have successfully used human stem cells to generate functional pituitary tissue that secretes hormones important for the body’s stress response as well as for its growth and reproductive functions. When transplanted into rats with hypopituitarism–a disease linked to dwarfism and premature aging in humans–the lab-grown pituitary cells promoted normal hormone release. The study, which lays the foundation for future preclinical work, appears June 14 in Stem Cell Reports, a publication of the International Society for Stem Cell Researchers.

“The current treatment options for patients suffering from hypopituitarism, a dysfunction of the pituitary gland, are far from optimal,” says first study author Bastian Zimmer of the Sloan Kettering Institute for Cancer Research. “Cell replacement could offer a more permanent therapeutic option with pluripotent stem cell-derived hormone-producing cells that functionally integrate and respond to positive and negative feedback from the body. Achieving such a long-term goal may lead to a potential cure, not only a treatment, for those patients.”

The pituitary gland is the master regulator of hormone production in the body, releasing hormones that play a key role in bone and tissue growth, metabolism, reproductive functions, and the stress response. Hypopituitarism can be caused by tumors, genetic defects, brain trauma, immune and infectious diseases, or radiation therapy. The consequences of pituitary dysfunction are wide ranging and particularly serious in children, who can suffer severe learning disabilities, growth and skeletal problems, as well as effects on puberty and sexual function.

Currently, patients with hypopituitarism must take expensive, lifelong hormone replacement therapies that poorly mimic the body’s complex patterns of hormone secretion that fluctuates with circadian rhythms and responds to feedback from other organs. By contrast, cell replacement therapies hold promise for permanently restoring natural patterns of hormone secretion while avoiding the need for costly, lifelong treatments.

Recently, scientists developed a procedure for generating pituitary cells from human pluripotent stem cells–an unlimited cell source for regenerative medicine–using organoid cultures that mimic the 3D organization of the developing pituitary gland. However, this approach is inefficient and complicated, relies on ill-defined cellular signals, lacks reproducibility, and is not scalable or suitable for clinical-grade cell manufacturing.

To address these limitations, Zimmer and senior study author Lorenz Studer of the Sloan Kettering Institute for Cancer Research developed a simple, efficient, and robust stem cell-based strategy for reliably producing a large number of diverse, functional pituitary cell types suitable for therapeutic use. Instead of mimicking the complex 3D organization of the developing pituitary gland, this approach relies on the precisely timed exposure of human pluripotent stem cells to a few specific cellular signals that are known to play an important role during embryonic development.

Exposure to these proteins triggered the stem cells to turn into different types of functional pituitary cells that released hormones important for bone and tissue growth (i.e., growth hormone), the stress response (i.e., adrenocorticotropic hormone), and reproductive functions (i.e., prolactin, follicle-stimulating hormone, and luteinizing hormone). Moreover, these stem cell-derived cells released different amounts of hormone in response to known feedback signals generated by other organs in the body.

To test the therapeutic potential of this approach, the researchers transplanted the stem cell-derived pituitary cells under the skin of rats whose pituitary gland had been surgical removed. The cell grafts not only secreted adrenocorticotropic hormone, prolactin, and follicle-stimulating hormone, but they also triggered appropriate hormonal responses in the kidneys.

The researchers were also able to control the relative composition of different hormonal cell types simply by exposing human pluripotent stem cells to different ratios of two proteins: fibroblast growth factor 8 and bone morphogenetic protein 2. This finding suggests their approach could be tailored to generate specific cell types for patients with different types of hypopituitarism. “For the broad application of stem cell-derived pituitary cells in the future, cell replacement therapy may need to be customized to the specific needs of a given patient population,” Zimmer says.

In future studies, the researchers plan to further improve the protocol to generate pure populations of various hormone-releasing cell types, enabling the production of grafts that are tailored to the needs of individual patients. They will also test this approach on more clinically relevant animal models that have pituitary damage caused by radiation therapy and receive grafts in or near the pituitary gland rather than under the skin. This research could have important implications for cancer survivors, given that hypopituitarism is one of the main causes of poor quality of life after brain radiation therapy.

“Our findings represent a first step in treating hypopituitarism, but that does not mean the disease will be cured permanently within the near future,” Zimmer says. “However, our work illustrates the promise of human pluripotent stem cells as it presents a direct path toward realizing the promise of regenerative medicine for certain hormonal disorders.”

###

The researchers were supported by the New York State Stem Cell Science and the Starr Foundation. The work was further supported in part by the National Institutes of Health and the National Cancer Institute.

Stem Cell Reports, Zimmer et al.: “Derivation of diverse hormone-releasing pituitary cells from human pluripotent stem cells” http://www.cell.com/stem-cell-reports/fulltext/S2213-6711(16)30060-1

Stem Cell Reports, published by Cell Press for the International Society for Stem Cell Research (@ISSCR), is a monthly open-access forum communicating basic discoveries in stem cell research, in addition to translational and clinical studies. The journal focuses on shorter, single-point manuscripts that report original research with conceptual or practical advances that are of broad interest to stem cell biologists and clinicians. Visit http://www.cell.com/stem-cell-reports. To receive Cell Press media alerts, please contact press@cell.com.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Day 8, Cushing’s Awareness Challenge 2016

It’s Here!

Dr. Cushing was born in Cleveland Ohio. The fourth generation in his family to become a physician, he showed great promise at Harvard Medical School and in his residency at Johns Hopkins Hospital (1896 to 1900), where he learned cerebral surgery under William S. Halsted.

After studying a year in Europe, he introduced the blood pressure sphygmomanometer to the U.S.A. He began a surgical practice in Baltimore while teaching at Johns Hopkins Hospital (1901 to 1911), and gained a national reputation for operations such as the removal of brain tumors. From 1912 until 1932 he was a professor of surgery at Harvard Medical School and surgeon in chief at Peter Bent Brigham Hospital in Boston, with time off during World War I to perform surgery for the U.S. forces in France; out of this experience came his major paper on wartime brain injuries (1918). In addition to his pioneering work in performing and teaching brain surgery, he was the reigning expert on the pituitary gland since his 1912 publication on the subject; later he discovered the condition of the pituitary now known as “Cushing’s disease“.

Read more about Dr. Cushing

Today, April 8th, is Cushing’s Awareness Day. Please wear your Cushing’s ribbons, t-shirts, awareness bracelets or Cushing’s colors (blue and yellow) and hand out Robin’s wonderful Awareness Cards to get a discussion going with anyone who will listen.

And don’t just raise awareness on April 8.  Any day is a good day to raise awareness.


harvey-book

I found this biography fascinating!

I found Dr. Cushing’s life to be most interesting. I had previously known of him mainly because his name is associated with a disease I had – Cushing’s. This book doesn’t talk nearly enough about how he came to discover the causes of Cushing’s disease, but I found it to be a valuable resource, anyway.
I was so surprised to learn of all the “firsts” Dr. Cushing brought to medicine and the improvements that came about because of him. Dr. Cushing introduced the blood pressure sphygmomanometer to America, and was a pioneer in the use of X-rays.

He even won a Pulitzer Prize. Not for medicine, but for writing the biography of another Doctor (Sir William Osler).

Before his day, nearly all brain tumor patients died. He was able to get the number down to only 5%, unheard of in the early 1900s.

This is a very good book to read if you want to learn more about this most interesting, influential and innovative brain surgeon.


What Would Harvey Say?

 

harvey-book

(BPT) – More than 80 years ago renowned neurosurgeon, Dr. Harvey Cushing, discovered a tumor on the pituitary gland as the cause of a serious, hormone disorder that leads to dramatic physical changes in the body in addition to life-threatening health concerns. The discovery was so profound it came to be known as Cushing’s disease. While much has been learned about Cushing’s disease since the 1930s, awareness of this rare pituitary condition is still low and people often struggle for years before finding the right diagnosis.

Read on to meet the man behind the discovery and get his perspective on the present state of Cushing’s disease.

* What would Harvey Cushing say about the time it takes for people with Cushing’s disease to receive an accurate diagnosis?

Cushing’s disease still takes too long to diagnose!

Despite advances in modern technology, the time to diagnosis for a person with Cushing’s disease is on average six years. This is partly due to the fact that symptoms, which may include facial rounding, thin skin and easy bruising, excess body and facial hair and central obesity, can be easily mistaken for other conditions. Further awareness of the disease is needed as early diagnosis has the potential to lead to a more favorable outcome for people with the condition.

* What would Harvey Cushing say about the advances made in how the disease is diagnosed?

Significant progress has been made as several options are now available for physicians to use in diagnosing Cushing’s disease.

In addition to routine blood work and urine testing, health care professionals are now also able to test for biochemical markers – molecules that are found in certain parts of the body including blood and urine and can help to identify the presence of a disease or condition.

* What would Harvey Cushing say about disease management for those with Cushing’s disease today?

Patients now have choices but more research is still needed.

There are a variety of disease management options for those living with Cushing’s disease today. The first line and most common management approach for Cushing’s disease is the surgical removal of the tumor. However, there are other management options, such as medication and radiation that may be considered for patients when surgery is not appropriate or effective.

* What would Harvey Cushing say about the importance of ongoing monitoring in patients with Cushing’s disease?

Routine check-ups and ongoing monitoring are key to successfully managing Cushing’s disease.

The same tests used in diagnosing Cushing’s disease, along with imaging tests and clinical suspicion, are used to assess patients’ hormone levels and monitor for signs and symptoms of a relapse. Unfortunately, more than a third of patients experience a relapse in the condition so even patients who have been surgically treated require careful long-term follow up.

* What would Harvey Cushing say about Cushing’s disease patient care?

Cushing’s disease is complex and the best approach for patients is a multidisciplinary team of health care professionals working together guiding patient care.

Whereas years ago patients may have only worked with a neurosurgeon, today patients are typically treated by a variety of health care professionals including endocrinologists, neurologists, radiologists, mental health professionals and nurses. We are much more aware of the psychosocial impact of Cushing’s disease and patients now have access to mental health professionals, literature, patient advocacy groups and support groups to help them manage the emotional aspects of the disease.

Learn More

Novartis is committed to helping transform the care of rare pituitary conditions and bringing meaningful solutions to people living with Cushing’s disease. Recognizing the need for increased awareness, Novartis developed the “What Would Harvey Cushing Say?” educational initiative that provides hypothetical responses from Dr. Cushing about various aspects of Cushing’s disease management based on the Endocrine Society’s Clinical Guidelines.

For more information about Cushing’s disease, visit www.CushingsDisease.com or watch educational Cushing’s disease videos on the Novartis YouTube channel at www.youtube.com/Novartis.

From http://www.jsonline.com/sponsoredarticles/health-wellness/what-would-harvey-cushing-say-about-cushings-disease-today8087390508-253383751.html

 

MaryO

Familial isolated pituitary adenoma (AIP study)

Professor Márta Korbonits is the Chief Investigator for the NIHR Clinical Research Network supported familial pituitary adenomas study (AIP) which is investigating the cause, the clinical characteristics and family screening of this relatively recently established disease group.

Please tell us about the condition in layman’s terms?
Pituitary adenomas are benign tumours of the master gland of the body, the pituitary gland. It is found at the base of the brain. The most commonly identified adenoma type causing familial disease makes excess amounts of growth hormone, and if this starts in childhood the patient have accelerated growth leading them to become much taller than their peers. This condition is known as gigantism.

How rare is this condition?
Pituitary adenomas cause disease in 1 in a 1000 person of the general population. About five to seven percent of these cases are familial pituitary adenomas.

How it is normally diagnosed?
There are different types of pituitary adenomas causing quite varied diseases. Gigantism and its adult counterpart acromegaly is usually diagnosed due to rapid growth, headaches, joint pains, sweating, high blood pressure and visual problems. Pituitary adenomas grow slowly and it usually takes 2-10 years before they get diagnosed. The diagnosis finally is made by blood tests measuring hormones, such as growth hormone, and doing an MRI scan of the pituitary area.

What is the study aiming to find out?
The fact that pituitary adenomas can occur in families relatively commonly was not recognised until recently. Our study introduced testing for gene alterations in the AIP (Aryl Hydrocarbon Receptor Interacting Protein) gene in the UK, and identified until now 38 families with 160 gene carriers via screening. We also aim to identify the disease-causing genes in our other families as well.

How will it benefit patients?
The screening and early treatment of patients can have a huge benefit to patients as earlier treatment will lead to less complications and better chance to recovery. We hope we can stop the abnormal growth spurts therefore avoiding gigantism. Patients that are screened will find out if they carry the AIP gene and whether they are likely to pass on the gene to their families. For most patients, knowing they have a gene abnormality also helps them to understand and accept their condition.

How will it change practice?
As knowledge of the condition becomes more understood, genetic testing of patients to screen for AIP changes should be more commonplace. Patients can be treated knowing they have this condition, and family members who are carriers of the gene can benefit from MRI scans to monitor their pituitary gland and annual hormone tests.

How did the NIHR CRN support the study?
The familial pituitary adenoma study is on the NIHR CRN Portfolio. The study’s association with NIHR has allowed the widespread assessment of the patients, has incentivised referrals from clinicians and raised awareness of both our study and the familial pituitary adenoma condition itself.

For more information contact NIHR CRN Communications Officer, Damian Wilcock on 020 3328 6705  or email damian.wilcock@nihr.ac.uk

From https://www.crn.nihr.ac.uk/blog/case_study/national-rare-disease-day-2016-familial-isolated-pituitary-adenoma-aip-study/

%d bloggers like this: