Insulin Resistance Unveiled: Cushing’s Disease in a Patient with Type 1 Diabetes Mellitus and Worsening Glycemic Control

Highlights

  • Coexistence of hypercortisolism secondary to ACTH-producing pituitary adenoma and type 1 diabetes mellitus.
  • Presentation of Cushing’s disease in individuals with type 1 diabetes mellitus.
  • Automated insulin delivery utilization in type 1 diabetes with comorbid refractory hypercortisolism.

ABSTRACT

Background/Objective

Type 1 diabetes mellitus is an autoimmune disease often characterized by endogenous insulin deficiency and often sensitivity to endogenous insulin administration. Cushing’s disease, though rare, should be considered as a cause of insulin resistance and increased insulin requirements in individuals with type 1 diabetes mellitus.

Case Presentation

A 21-year-old female with type 1 diabetes mellitus presented with steadily increasing insulin requirements via her hybrid closed-loop insulin pump. She subsequently developed hypertension, weight gain, violaceous striae, and cystic acne. Laboratory evaluation revealed unsuppressed cortisol of 16.6 μg/dL after a 1-mg dexamethasone suppression test, with a simultaneous adrenocorticotropin hormone level of 73.3 pg/mL. Pituitary MRI showed a 1.9 cm sellar mass with local invasion. She underwent transsphenoidal hypophysectomy. Postoperative cortisol was 8.9 μg/dL after intraoperative dexamethasone exposure. Residual hypercortisolism was confirmed, necessitating gamma knife radiation and pharmacologic treatment with a steroidogenesis inhibitor.

Discussion

We present a case of Cushing’s disease due to a corticotropin-secreting pituitary macroadenoma in a young woman with type 1 diabetes. Her initial presentation included rising insulin requirements, followed by overt hypercortisolism. Despite surgery, persistent hypercortisolism required further intervention with gamma knife radiation and osilodrostat. She experienced reductions in both weight and insulin needs, with normalization of cortisol levels on maintenance osilodrostat.

Conclusion

Cushing’s syndrome should be considered in the differential diagnosis of patients with type 1 diabetes and increasing insulin requirements. This case underscores the importance of regular review of automated insulin delivery data and consideration of endocrine causes of insulin resistance and increased insulin requirements in those with type 1 diabetes.

KEY WORDS

Type 1 Diabetes Mellitus
T1DM
Cushing’s disease
Insulin resistance
Insulin pump
Total Daily Dose
TDD

Introduction

Cushing’s syndrome occurs as the result of prolonged elevation in plasma cortisol which can lead to adverse effects including insulin resistance, hyperglycemia, hypertension, weight gain, immunosuppression, and neurocognitive changes. Cushing’s syndrome can occur due to exogenous exposure to corticosteroids or endogenous cortisol hypersecretion. The most common etiology of endogenous hypercortisolism is Cushing’s disease secondary to a corticotrophin-secreting pituitary tumor. In 90% of cases of Cushing’s disease, patients present with pituitary microadenomas, with only 10% of patients presenting with pituitary tumors >1 cm1.
Type 1 diabetes mellitus is an autoimmune condition characterized by T-cell mediated destruction of pancreatic beta cells with ultimate inability to produce insulin and subsequent insulin dependence2. Over the last decade, there has been significant advancement in diabetes management strategies and insulin delivery with creation of hybrid closed-loop insulin pump technology used in conjunction with continuous glucose monitoring systems to provide automated insulin delivery. Within the field of endocrinology, this has required a shift in both the interpretation of glycemic data, insulin utilization data, as well as a pivot to approaching titration of insulin pump settings. Assessment of total daily basal and total daily dose (TDD) in automated mode is of utmost importance when utilizing automated insulin delivery as the amount of insulin utilized can vary significantly in comparison to fixed quantities seen with use of manual mode in an insulin pump2,3.
Type 1 diabetes mellitus is typically characterized by relative insulin sensitivity, particularly early in the disease course. Patients can develop insulin resistance over time, particularly in the setting of comorbid obesity. However, we present a case of a young woman with type 1 diabetes mellitus presenting with steadily increasing insulin requirements followed by development of overt Cushing’s secondary to corticotropin-secreting pituitary macroadenoma. She was utilizing a hybrid-closed loop insulin pump technology with insulin pump download indicating diminished glycemic control despite a steady increase in total daily insulin requirements. This is only the third reported case of Cushing’s disease in a person living with type 1 diabetes mellitus4,5.

Case Presentation

A 21-year-old female with a history of type 1 diabetes diagnosed at age 11 in the context of admission for diabetic ketoacidosis initially presented to adult endocrinology for routine outpatient diabetes management. Type 1 Diabetes Mellitus was managed with automated hybrid-closed loop insulin pump technology (Tandem T-slim X:2 with Dexcom G6 continuous glucose monitoring system). Her hemoglobin A1c was 6.2% with a review of her continuous glucose monitoring system indicating time in range of 73% with 21% of blood glucose levels >180 mg/dL. At that time, she reported concerns regarding high insulin requirements despite an active lifestyle as she was running out of insulin for use in pump early. She was noted to have significant prandial insulin requirements with insulin to carbohydrate ratio of 1 unit for every 3.0-4.5 carbohydrates, raising concern for insulin resistance. Over the next 16 months, she had weight gain of 15.8 kg with elevation in blood pressure and worsening hyperglycemia. Review of her insulin pump downloads indicated a steady increase in her total daily insulin requirements of close to 30%, coupled with reduced time in range and increase in HbA1c.
On repeat physical examination, the development of cystic acne, trace pitting pedal edema, and purple violaceous striae on the abdomen, hips, and thighs were observed. She was also noted to have a new elevation of blood pressure to 162/101 mm Hg. She declined exposure to exogenous corticosteroids (including oral, topical or intra-articular formulations). Based on clinical examination and changes in insulin requirements, the decision was made to evaluate for hypercortisolism. Laboratory evaluation at that time revealed unsuppressed 08:00 AM cortisol level of 16.6 ug/dL after 1 mg of dexamethasone the evening prior. Dexamethasone level was confirmed to be more than adequate at 418 ng/dL (reference range for 8:00 AM level following 1 mg dexamethasone previous evening: 140-295 ng/dL). A simultaneous ACTH level was elevated at 73.3 pg/mL (reference range: 7.2-63.3 pg/mL). She was also noted to have midnight salivary cortisol levels of 0.646, 0.290, and 0.350 ug/dL on three consecutive evenings (reference range <0.010-0.090 ug/dL).
She then underwent MRI pituitary with and without gadolinium enhancement which revealed 1.8 x 1.9 cm enhancing sellar mass with invasion of the right cavernous sinus, extension around the right internal carotid artery, as well as posteriorly down the dorsal aspect of the clivus (Figures 1 and 2). As both hypercortisolism as well as type 1 diabetes mellitus have been implicated as etiologies for lower bone density with subsequent increased risk of osteoporosis later in life, bone densometry was also obtained for this patient. She was found to have low bone mineral density for her age with Z-score of the lumbar spine of -3.2, Z-score of the femoral neck of -2.3, and Z-score of the total hip of -2.8.

  1. Download: Download high-res image (173KB)
  2. Download: Download full-size image

Figure 1. MRI pituitary coronal image revealing sellar mass with invasion of the right cavernous sinus, extension around the right internal carotid artery.

  1. Download: Download high-res image (209KB)
  2. Download: Download full-size image

Figure 2. MRI pituitary sagittal image revealing 1.8 x 1.9 cm sellar mass.

She was evaluated by neurosurgery and underwent endoscopic trans-sphenoidal resection of pituitary macroadenoma. Pathology revealed immunoreactivity for neuroendocrine marker INSM1 (Insulinoma-associated protein 1) and adrenocorticotropic hormone. The lesion was negative for immunoreactivity for prolactin, growth hormone, thyroid-stimulating hormone, follicle-stimulating hormone, and beta-luteinizing hormone.
The cortisol level was 8.9 ug/dL on post-operative day 1. It is notable that she had received 10 mg of intravenous Dexamethasone intraoperatively, raising concern for residual tumor. On post-operative day 3, cortisol level was 4.1 mcg/dL with ACTH level of 94.5 pg/mL. Repeat random cortisol level was 16.3 mcg/dL with simultaneous ACTH level of 63.3 pg/mL. Upon being discharged home, a repeat 24-hour urinary free cortisol was obtained in the outpatient setting and found to be elevated at 464 ug/24 hours (reference range: 6-42 ug/24 hours), consistent with refractory hypercortisolism (Table 1Figure 4). She was then initiated on osilodrostat, a steroidogenesis inhibitor approved by the FDA in 2020 for use in refractory Cushing’s disease after pituitary surgery. Osilodrostat works via inhibition of 11β-hydroxylase and aldosterone synthase to inhibit the production of cortisol and aldosterone6,7. She underwent ongoing up titration to a maintenance dose of osilodrostat 7 mg twice daily with additional insulin pump titrations over a 2-year duration. Urinary free cortisol was monitored as this is the gold standard for monitoring refractory Cushing’s and the preferred modality for monitoring cortisol levels in individuals on osilodrostat. Final repeat 24-hour urine free cortisol level normalized to 35 ug/24 hours and TDD of insulin via automatic insulin delivery system was lower than time of diagnosis of pituitary Cushing’s at 96 units per day despite having had a roughly 27 kg weight gain (Table 1Figure 4).

Table 1. Weight trends as well as TDD of insulin listed along with glycemic parameters from automated insulin dosing system Tandem T-slim X:2 with automated mode utilizing Decom G6 CGM. 24-hour urine cortisol collection data included to highlight degree of hypercortisolism. Treatments denoted by asterisk in table include

Date Weight (kg) Total daily insulin dose (units/day) HbA1c (%) Time in range (%) Urine cortisol (mcg/24 hours); RR 6-42 mcg/24 hours
03/2021 72.7 99.25 6.2 73
06/2021 74.5 109.56 6.6 73
12/2021 80.0 117.17 6.9 62
05/2022 88.5 126.84 6.9 57
11/2022
12/2022 93.8 124.15 7.0 61 464
01/2023∗∗
02/2023 35
06/2023∗∗∗
06/2023 100.4 122.76 7.0 54
07/2023 137
12/2023 100.9 130.34 6.8 48 48
08/2024 106 125 6.9 58 76
02/2025 100 96 5.8 76 42
Transsphenoidal resection.
∗∗
Osilodrostat initiated.
∗∗∗
Gamma knife radiosurgery.

  1. Download: Download high-res image (236KB)
  2. Download: Download full-size image

Figure 3. MRI pituitary coronal image revealing right eccentric heterogenous enhancing sellar mass which is decreased in size. Redemonstrated residual tissue around the right carotid artery.

  1. Download: Download high-res image (220KB)
  2. Download: Download full-size image

Figure 4. Graphical representation of weight (kg), total daily dose of insulin (units per day), and 24-hour urine cortisol measurements (mcg/24 hours).

Due to ongoing hypercortisolism, repeat MRI pituitary with and without gadolinium enhancement was obtained and revealed residual disease in the right sella with right cavernous sinus involvement and extending posteriorly along the dorsal aspect of the clivus (Figure 3). She had subsequent consultation with neurosurgery at which time the decision made to proceed with single-fraction gamma knife stereotactic radiosurgery. She received additional treatment of gamma knife radiosurgery with dose of 18 Gy to target residual pituitary disease.

Discussion

We present, to our knowledge, the third reported case of Cushing’s disease due to a corticotropin-secreting pituitary adenoma in an individual with type 1 diabetes. Prolonged hypercortisolism, as seen in this case, is associated with obesity, hypertension, decreased bone density, insulin resistance, and decreased glucose control. Hypercortisolism is most commonly caused by chronic exogenous corticosteroid exposure however, endogenous hypercortisolemia should be considered as a potential etiology of worsening glycemia and insulin resistance in individuals with diabetes mellitus.
The coexistence of Cushing’s disease secondary to a corticotropin-secreting pituitary macroadenoma in an individualwith type 1 diabetes mellitus is exceedingly rare. Furthermore, only 10% of pituitary Cushing’s cases present with macroadenomas at the time of diagnosis. Several studies indicate that smaller lesions at the time of diagnosis and earlier diagnosis of Cushing’s disease are associated with reduced risk of disease recurrence6,7,8. In this case, a young female presented with a macroadenoma at the time of diagnosis and had residual post-operative hypercortisolism requiring gamma knife radiation and pharmacologic intervention with osilodrostat, a steroidogenesis inhibitor approved by the FDA in 2020 for use in refractory Cushing’s disease after pituitary surgery. Osilodrostat works via inhibition of 11β-hydroxylase and aldosterone synthase to inhibit the production of cortisol and aldosterone9,10. Of the two other reported cases of comorbid type 1 diabetes and Cushing’s disease, one individual presented with a macroadenoma at the time of diagnosis. This case occurred in a pediatric male with type 1 diabetes mellitus who was ultimately admitted to the hospital with worsening headaches in the setting of pituitary apoplexy. Prior to hospitalization, this individual showed numerous clinical stigmata of hypercortisolism.
Other contributors to increased insulin resistance, such as obesity, infection, stress, and concurrent glucocorticoids, should also be considered in the differential diagnosis when evaluating etiologies for unexplained changes in glycemic control. However, this case emphasizes the importance of considering the possibility of comorbid Cushing’s disease in persons with type 1 diabetes mellitus. This is imperative to mitigate the consequences of prolonged hypercortisolism and to potentially aid in earlier diagnosis. In this case, declining glucose control and increasing insulin requirements were noted prior to other overt clinical findings of hypercortisolism. Thus, this case also underscores the importance of steadfast evaluation of insulin dose requirements for individuals using continuous insulin infusion devices (particularly hybrid closed-loop automated insulin delivery [AID] systems). With growing emphasis on the review and utilization of the one-page ambulatory glucose profile, it is important to also review insulin pump settings and insulin delivery for those utilizing these systems as automated insulin delivery profile for total daily dose can change and should be reviewed at each visit.

Conclusion

In closing, this case emphasizes the importance of considering secondary endocrine disorders in those living with diabetes mellitus who experience sudden or unexplained changes in glycemic control and insulin requirements. Although rare, coexistence of type 1 diabetes and Cushing’s disease can occur. Prompt recognition and treatment of the underlying Cushing’s disease can lead to significant improvements in insulin sensitivity and glycemic outcomes. This report reinforces the need for multidisciplinary management of vigilant monitoring in patients with coexisting endocrine pathologies, particularly when advanced diabetes technologies are in use. Ultimately, it highlights the critical role of clinical suspicion and timely intervention in optimizing outcomes for complex endocrine cases.

Uncited reference

1.1..

References

Cushing’s Syndrome Etiology Affects Adrenal Function Recovery

The aim was to analyze the postsurgical duration of adrenal insufficiency of patients with Cushing’s disease (CD), adrenal CS and ectopic CS.

Design:

We performed a retrospective analysis based on the case records of 230 CS patients in our tertiary referral center treated from 1983 to 2014. The mean follow-up time was 8 years.

The probability of recovering adrenal function within a 5 years follow-up differed significantly between subtypes (p=0.001). It was 82 % in ectopic CS, 58 % in Cushing’s disease and 38 % in adrenal CS. In the total cohort with restored adrenal function (n=52) the median time to recovery differed between subtypes: 0.6 (IQR 0.03–1.1) years in ectopic CS, 1.4 (IQR 0.9–3.4) years in CD, and 2.5 (IQR 1.6–5.4) years in adrenal CS (p=0.002). In CD the Cox proportional-hazards model showed that the probability of recovery was associated with younger age (hazard ratio 0.896, 95% CI 0.822–0.976, p=0.012), independently of sex, BMI, duration of symptoms, and basal ACTH and cortisol levels. There was no correlation with length and extend of hypercortisolism or postoperative glucocorticoid replacement doses.

Conclusions:

Time to recovery of adrenal function is dependent on the underlying etiology of CS.

ISTURISA® (osilodrostat) Now Available in Canada for the Treatment of Cushing’s Disease

ISTURISA® (osilodrostat) is indicated for the treatment of adult patients with Cushing’s disease who have persistent or recurrent hypercortisolism after primary pituitary surgery and/or irradiation, or for whom pituitary surgery is not an option.1

TORONTO, Jan. 13, 2026 /CNW/ – Recordati Rare Diseases Canada Inc. announced today the Canadian product availability of ISTURISA® (osilodrostat) for the treatment of adult patients with Cushing’s disease who have persistent or recurrent hypercortisolism following pituitary surgery and/or irradiation, or for whom surgery is not an option.1 This is following the marketing authorisation of ISTURISA® in Canada on July 5, 2025.

Dr. André Lacroix, Professor of Medicine at the University of Montreal and internationally recognized authority in Cushing’s syndrome, commented on the importance of this new treatment option: ” ISTURISA® is an important addition to the treatment options for Cushing’s disease, a rare and debilitating condition. Achieving control of cortisol overproduction is an important strategy in helping patients manage Cushing’s disease.”

ISTURISA’s approval is supported by data from the LINC 3 and LINC 4 Phase III clinical studies, which demonstrated clinically meaningful reductions in mean urinary free cortisol (mUFC) levels and showed a favourable safety profile. ISTURISA® is available as 1 mg, 5 mg, and 10 mg film-coated tablets, enabling individualized titration based on cortisol levels and clinical response.1

About Cushing’s Disease

Cushing disease is a rare disorder of hypercortisolism caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma, which in turn stimulates the adrenal glands to produce excess cortisol. Prolonged exposure to elevated cortisol levels is associated with substantial morbidity and mortality and impaired quality of life (QoL). Accordingly, normalization of cortisol is the primary treatment goal for Cushing disease.2

About Isturisa®

ISTURISA® is an inhibitor of 11β‐hydroxylase (CYP11B1), the enzyme responsible for the final step of cortisol synthesis in the adrenal gland. ISTURISA® is taken twice daily and is available as 1 mg, 5 mg and 10 mg film‐coated tablets, allowing for individualized titration based on cortisol levels and clinical response. For full prescribing information, healthcare professionals are encouraged to consult the Isturisa Product Monograph at https://recordatirarediseases.com/wp content/uploads/2025/08/ISTURISAProduct-Monograph-English-Current.pdf

Recordati Rare Diseases is Recordati’s dedicated business unit focused on rare diseases. Recordati is an international pharmaceutical Group listed on the Italian Stock Exchange (XMIL: REC), with roots dating back to a family-run pharmacy in Northern Italy in the 1920s. Our fully integrated operations span clinical development, chemical and finished product manufacturing, commercialisation and licensing. We operate in approximately 150 countries across EMEA, the Americas and APAC with over 4,500 employees.

Recordati Rare Diseases’ mission is to reduce the impact of extremely rare and devastating diseases by providing urgently needed therapies. We work side-by-side with rare disease communities to increase awareness, improve diagnosis and expand availability of treatments for people with rare diseases.

Recordati Rare Diseases Canada Inc. is the company’s Canada offices located inToronto, Ontario, with the North America headquarter offices located in New Jersey, US, and the global headquarter offices located in Milan, Italy.

This document contains forward-looking statements relating to future events and future operating, economic and financial results of the Recordati group. By their nature, forward-looking statements involve risk and uncertainty because they depend on the occurrence of future events and circumstances. Actual results may therefore differ materially from those forecast for a variety of reasons, most of which are beyond the Recordati group’s control. The information on the pharmaceutical specialties and other products of the Recordati group contained in this document is intended solely as information on the activities of the Recordati Group, and, as such, it is not intended as a medical scientific indication or recommendation, or as advertising.

References:
1. Isturisa® Product Monograph. 2025-07-03
2. Gadelha M et al. J Clin Endocrinol Metab. 2022 Jun 16;107(7): e2882-e2895

SOURCE Recordati Rare Diseases Canada Inc.

rt.gif?NewsItemId=C1738&Transmission_Id=

Media Relations: spPR Inc., Sonia Prashar, 416.560.6753, Soniaprashar@sppublicrelations.com

https://www.newswire.ca/news-releases/isturisa-r-osilodrostat-now-available-in-canada-for-the-treatment-of-cushing-s-disease-879473023.html

Transsphenoidal Surgery Leads to Remission in Children with Cushing’s Disease

Transsphenoidal surgery — a minimally invasive surgery for removing pituitary tumors in Cushing’s disease patients — is also effective in children and adolescents with the condition, leading to remission with a low rate of complications, a study reports.

The research, “Neurosurgical treatment of Cushing disease in pediatric patients: case series and review of literature,” was published in the journal Child’s Nervous System.

Transsphenoidal (through the nose) pituitary surgery is the main treatment option for children with Cushing’s disease. It allows the removal of pituitary adenomas without requiring long-term replacement therapy, but negative effects on growth and puberty have been reported.

In the study, a team from Turkey shared its findings on 10 children and adolescents (7 females) with the condition, who underwent microsurgery (TSMS) or endoscopic surgery (ETSS, which is less invasive) — the two types of transsphenoidal surgery.

At the time of surgery, the patients’ mean age was 14.8 years, and they had been experiencing symptoms for a mean average of 24.2 months. All but one had gained weight, with a mean body mass index of 29.97.

Their symptoms included excessive body hair, high blood pressure, stretch marks, headaches, acne, “moon face,” and the absence of menstruation.

The patients were diagnosed with Cushing’s after their plasma cortisol levels were measured, and there was a lack of cortical level suppression after they took a low-dose suppression treatment. Measurements of their adrenocorticotropic (ACTH) hormone levels then revealed the cause of their disease was likely pituitary tumors.

Magnetic resonance imaging (MRI) scans, however, only enabled tumor localization in seven patients: three with a microadenoma (a tumor smaller than 10 millimeters), and four showed a macroadenoma.

CD diagnosis was confirmed by surgery and the presence of characteristic pituitary changes. The three patients with no sign of adenoma on their MRIs showed evidence of ACTH-containing adenomas on tissue evaluation.

Eight patients underwent TSMS, and 2 patients had ETSS, with no surgical complications. The patients were considered in remission if they showed clinical adrenal insufficiency and serum cortisol levels under 2.5 μg/dl 48 hours after surgery, or a cortisol level lower than 1.8 μg/dl with a low-dose dexamethasone suppression test at three months post-surgery. Restoration of normal plasma cortisol variation, eased symptoms, and no sign of adenoma in MRI were also requirements for remission.

Eight patients (80%) achieved remission, 4 of them after TSMS. Two patients underwent additional TSMS for remission. Also, 1 patient had ETSS twice after TSMS to gain remission, while another met the criteria after the first endoscopic surgery.

The data further showed that clinical recovery and normalized biochemical parameters were achieved after the initial operation in 5 patients (50%). Three patients (30%) were considered cured after additional operations.

The mean cortisol level decreased to 8.71 μg/dl post-surgery from 23.435 μg/dl pre-surgery. All patients were regularly evaluated in an outpatient clinic, with a mean follow-up period of 11 years.

Two patients showed pituitary insufficiency. Also, 2 had persistent hypocortisolism — too little cortisol — one of whom also had diabetes insipidus, a disorder that causes an imbalance of water in the body. Radiotherapy was not considered in any case.

“Transsphenoidal surgery remains the mainstay therapy for CD [Cushing’s disease] in pediatric patients as well as adults,” the scientists wrote. “It is an effective treatment option with low rate of complications.”

 

From https://cushingsdiseasenews.com/2019/01/15/transsphenoidal-surgery-enables-cushings-disease-remission-pediatric-patients-study/

Myth: “Each Person Requires the Same Dose of Steroid in Order to Survive…

Myth: “Each person requires the same dose of steroid in order to survive with Secondary or Primary Adrenal Insufficiency”

myth-busted

Fact: In simple terms, Adrenal Insufficiency occurs when the body does not have enough cortisol in it. You see, cortisol is life sustaining and we actually do need cortisol to survive. You have probably seen the commercials about “getting rid of extra belly fat” by lowering your cortisol. These advertisements make it hard for people to actually understand the importance of the function of cortisol.

After a Cushing’s patient has surgery, he/she goes from having very high levels of cortisol to no cortisol at all. For pituitary patients, the pituitary, in theory, should start working eventually again and cause the adrenal glands to produce enough cortisol. However, in many cases; the pituitary gland does not resume normal functioning and leaves a person adrenally insufficient. The first year after pit surgery is spent trying to get that hormone to regulate on its own normally again. For a patient who has had a Bilateral Adrenalectomy (BLA), where both adrenal glands are removed as a last resort to “cure” Cushing’s; his/her body will not produce cortisol at all for his/her life. This causes Primary Adrenal Insufficiency.

All Cushing’s patients spend time after surgery adjusting medications and weaning slowly from steroid (cortisol) to get the body to a maintenance dose, which is the dose that a “normal” body produces. This process can be a very long one. Once on maintenance, a patient’s job is not over. He/She has to learn what situations require even more cortisol. You see, cortisol is the stress hormone and also known as the Fight or Flight hormone. Its function is to help a person respond effectively to stress and cortisol helps the body compensate for both physical and emotional stress. So, when faced with a stressor, the body will produce 10X the baseline levels in order to compensate. When a person can not produce adequate amounts of cortisol to compensate, we call that Adrenal Insufficiency. If it gets to the point of an “Adrenal Crisis”, this means that the body can no longer deal and will go into shock unless introduced to extremely high levels of cortisol, usually administered through an emergency shot of steroid.

There are ways to help prevent a crisis, by taking more steroid than the maintenance dose during times of stress. This can be anything from going to a family function (good stress counts too) to fighting an infection or illness. Acute stressors such as getting into a car accident or sometimes even having a really bad fight require more cortisol as well.

It was once believed that everyone responded to every stressor in the exact same way. So, there are general guidelines about how much more cortisol to introduce to the body during certain stressors. For instance, during infection, a patient should take 2-3X the maintenance dose of steroid (cortisol). Also, even the maintenance dose was considered the same for everyone. Now a days, most doctors will say that 20 mg of Hydrocortisone (Steroid/Cortisol) is the appropriate maintenance dose for EVERYONE. Now, we know that neither is necessarily true. Although the required maintenance dose is about the same for everyone; some patients require less and some require more. I have friends who will go into an adrenal crisis if they take LESS than 30 mg of daily steroid. On the other hand, 30 mg may be way too much for some and those folks may even require LESS daily steroid, like 15 mg. Also, I want to stress (no pun intended) that different stressors affect different people differently. For some, for instance, an acute scare may not affect them. However, for others, receiving bad news or being in shock WILL put their bodies into crisis. That person must then figure out how much additional steroid is needed.

Each situation is different and each time may be different. Depending on the stressor, a person may need just a little more cortisol or a lot. Every person must, therefore, learn their own bodies when dealing with Adrenal Insufficiency. This is VERY important! I learned this the hard way. As a Clinical Psychologist; I assumed that my “coping skills” would be enough to prevent a stressor from putting me into crisis. That was FAR from the truth! I have learned that I can not necessarily prevent my body’s physiological response to stress. People often ask me, “BUT you are a psychologist! Shouldn’t you be able to deal with stress?!!!!” What they don’t realize is that my BODY is the one that has to do the job of compensating. Since my body can not produce cortisol at all, my job is to pay close attention to it so that I can take enough steroid to respond to any given situation. We all have to do that. We all have to learn our own bodies. This is vitally important and will save our lives!

To those we have lost in our community to Adrenal Insufficiency after treatment of Cushing’s, Rest in Peace my friends! Your legacies live on forever!

~ By Karen Ternier Thames