Asymptomatic Pheochromocytoma Associated with MEN Syndrome and Subclinical Cushing’s Syndrome

Abstract

Introduction and importance

Pheochromocytoma and Cushing’s syndrome are rare endocrine conditions caused by tumors in the adrenal gland. These conditions are classified under Multiple Endocrine Neoplasia (MEN) syndrome, characterized by the development of multiple tumors in the endocrine system. However, diagnosing these conditions can be challenging as they often lack clear symptoms, requiring careful evaluation, monitoring, and treatment to prevent complications.

Case presentation

A 23-year-old male recently presented with right-sided abdominal fullness and lipoma-like masses on the torso. Over a span of six months, the abdominal mass nearly doubled in size, accompanied by elevated levels of catecholaminescortisolparathyroid hormone (PTH), and calcitonin. Surprisingly, the patient remained asymptomatic despite these abnormal lab values. CT imaging revealed a substantial increase in the size of the mass in the right adrenal gland, from 6 × 7 cm to approximately 11.2 × 10.2 × 9 cm.

Clinical discussion

Pheochromocytoma secretes catecholamines and often leads to hypertension and related symptoms. Interestingly, most individuals with pheochromocytoma do not exhibit obvious symptoms, necessitating blood and urine tests, along with imaging studies, for accurate diagnosis. The size of the tumor does not necessarily indicate the severity of symptoms. MEN-2, a genetic syndrome, is characterized by pheochromocytoma, medullary thyroid carcinoma, and hyperparathyroidism. Additionally, methods for diagnosing Cushing’s syndrome, caused by excess cortisol production, are discussed.

Conclusion

Early diagnosis and genetic counseling are crucial in preventing complications associated with these conditions. By identifying them, appropriate treatment can be ensured for positive outcomes of patients and their families.

Keywords

Pheochromocytoma
Multiple Endocrine Neoplasia (MEN) syndrome
Cushing’s syndrome
Rare Case Report

Abbreviations

CT

computed tomography

MRI

Magnetic resonance imaging

USG

Ultrasonography

131I-MIBG

iodine 131 labeled meta-iodobenzylganidine

RAAS

Renin-angiotensin-aldosterone system

    1. Introduction

    Pheochromocytoma are catecholamine secreting tumors of chromaffin cells of adrenal medulla. It can be found anywhere in the body, with the majority being intra-abdominal and those other than adrenal medulla are referred to as paragangliomas [1,2]. Pheochromocytoma typically secretes norepinephrine and epinephrine, with norepinephrine being the primary catecholamine. However, some tumors may only secrete one of the two, and rarely, some may secrete dopamine or dopa [3].

    Vast majority >90 % of adrenal neoplasms are benign non-functional adenomas [4].About 10 % of pheochromocytomas are malignant and 10 % of cases are found on both sides. Additionally, approximately 40 % of pheochromocytomas are caused by genetic factors and can be associated with inherited syndromes [5].

    Pheochromocytoma is found to be associated with MEN-2. MEN-2 is a hereditary genetic condition that is caused by a de novo mutation in the RET gene. It is inherited in an autosomal dominant fashion and is mainly characterized by medullary thyroid carcinoma, pheochromocytoma and parathyroid adenoma or hyperplasia [6].

    MEN syndrome can be MEN-1, MEN-2A and MEN-2B. MEN-1 is characterized by pituitary tumors (prolactin or growth hormone), pancreatic endocrine tumors and parathyroid adenomas. Additionally, other tumors such as foregut carcinoidsadrenocortical adenomas, meningioma, lipomas, angiofibromas and collagenomas may also occur in MEN-1. MEN-2A is characterized by medullary thyroid carcinoma, pheochromocytoma, and parathyroid adenoma/hyperplasia; it can also be associated with cutaneous lichen amyloidosis and Hirschsprung disease. On the other hand, MEN-2B is characterized by familial medullary thyroid cancer, pheochromocytoma, mucosal neuromasgastrointestinal tract issues, musculoskeletal and spinal problems. [7].

    Cushing syndrome results from hypercortisolism and is characterized by hypertension, weight gain, easy bruising, and central obesity [4]. Cushing’s disease refers to ACTH-dependent cortisol excess caused by a pituitary adenoma, while ACTH-independent cortisol excess due to non-pituitary causes such as excess use of glucocorticoids, adrenal adenoma, hyperplasia, or carcinoma is referred to as Cushing syndrome [8].

    This case report has been written according to the SCARE checklist [9].

    2. Case presentation

    A 23-year-old male presented to our surgery department with the chief complaint of right sided abdominal fullness for six months. According to the patient a mass was incidentally reported six months back while he was under-evaluation for mild trauma due to road traffic accident. Six months back, the mass was approximately 6 × 7 cm, while at the time of presentation to our department the mass was approximately 11.2 × 10.2 × 9 cm (CT abdomen) which was globular in shape, had regular margin, and moved with respiration. He had no history of hypertension, headache, palpitation, sweating, pallor, recent weight loss, abdominal pain, psychological disturbance, dizzinessloss of consciousness, dark color urine, burning micturition, had normal bowel and bladder habit.

    Past history and family history were insignificant. He was not under any long-term medication and no known drug allergies. He occasionally smokes and consumes alcohol.

    On physical examination at the time of presentation, multiple soft, mobile, painless, subcutaneous nodules like lipoma were present over the torso. His height was 176.8 cm, weight 68 kg, BMI 21.8 kg/m2 (body mass index). He had blood pressure of 110/70 mm of Hg taken in left arm at sitting position, heart rate of 62 beats/min, respiratory rate of 24/min, temperature of 96.6 °F, SPO2 of 98 % at right hand. A mass was palpable on the right side of abdomen, otherwise abdomen was soft, non-tender, normal bowel sound was present. Chest, cardiac and neurologic examinations were all normal.

    Initial laboratory evaluation revealed 24 h. urine metanephrine of 5415 μg/24 h (normal: 25–312 μg/24 h.); 24 h. urine VMA of 32.2 mg/24 h. (normal: <13.60 mg/24 h.); serum cortisol of 535.16 nmol/l after overnight low dose dexamethasone(1 mg) suppression test (normal: <50 nmol/l);24 h. Urine free cortisol of 526.61 nmol/24 h. (normal: 30–145 nmol/24 h) PTH(intact) of 89.2 pg./ml (normal: 15–65 pg./ml); serum calcitonin of 15.2 pg./ml (normal: ≤8.4 pg./ml); serum CEA of 4.72 ng/ml (normal: 0.0–4.4 ng/ml); serum DHEA of 1.19 ng/ml (normal: 1.7–6.1 ng/ml). Baseline investigation: Hematology, urine routine/microscopic, electrolytes were within the normal range.

    Additional laboratory findings were as in the Table 1.

    Table 1.

    Lab evaluation Result Reference Unit
    Metanephrine, urine 24 h 5415 25–312 μg/24 h
    VMA, urine 24 h 32.2 <13.60 mg/24 h
    VMA, urine 12.88 ng/l
    Cortisol, serum, overnight DST 535.16 <50 nmol/l
    Cortisol, urine 24 h 526.61 30–145 nmol/24 h
    ACTH, complete 28.3 7.2–63.3 pg/ml
    DHEA, serum 1.19 1.7–6.1 ng/ml
    CEA, serum 4.72 0.0–4.4 ng/ml
    Phosphorus, serum 3.0 2.5–4.5 mg/dl
    Albumin, serum 5.2 3.5–5.2 g/dl
    Calcitonin, serum 15.2 ≤8.4 pg/ml
    Calcium, serum 8.94 8.6–10.0 mg/dl
    PTH (intact) 89.2 15–65 pg/ml
    aldosterone 8.7 7.0–30 g/dl
    Plasma rennin activity 1.42 0.10–6.56 ng/ml/h
    Aldosterone-rennin ratio 6.13 ≤20
    Creatinine, urine 36 mg/dl

    DST – dexamethasone suppression test; VMA – vanilmandelic acid; ACTH – adrenocorticotropic hormone; DHEA – dehydroepiandrosterone; CEA – carcino-embryonic-antigen; PTH – parathyroid hormone.

    2.1. USG abdomen

    USG abdomen (Fig. 1Fig. 2) showed well defined mixed echoic area in Right adrenal region measuring 12.7 × 10.7 cm in size. There was presence of internal vascularity with multiple foci of cystic compound. The lesion displaced the right kidney inferiorly.

    Fig. 1

    1. Download : Download high-res image (102KB)
    2. Download : Download full-size image

    Fig. 1. USG abdomen.

    Fig. 2

    1. Download : Download high-res image (106KB)
    2. Download : Download full-size image

    Fig. 2. USG abdomen.

    2.2. Plane and contrast CT scan of abdomen

    Plane and contrast CT scan of Abdomen (Fig. 3) showed approximately 11.2 × 10.2 × 9 cm sized, relatively well defined heterogeneous soft tissue density lesion with well-defined enhancing wall in right adrenal region. Non-enhancing areas were noted within the mass suggestive of necrosis. Few calcific foci were noted within the mass with no obvious hemorrhagic component. The lesion showed heterogeneous enhancement post contrast image.

    Fig. 3

    1. Download : Download high-res image (192KB)
    2. Download : Download full-size image

    Fig. 3. CT abdomen.

    After all the workup patient was given diagnosis of right sided Pheochromocytoma associated with MEN syndrome, with ACTH-independent Cushing’s syndrome and right adrenalectomy was performed.

    2.3. Pathology report

    2.3.1. Gross descriptions

    The specimen was globular mass measuring 14.5 × 10 cm, with smooth outer surface. On sectioning, the mass was well circumscribed, soft and yellow-brown, predominantly solid with cyst formation. The size of cyst ranges from 0.3 to 3.5 cm in diameter. Areas of hemorrhages were noted.

    2.3.2. Microscopic description

    Section showed tumor cells arranged in well-defined nests (Zellballen), alveolar and diffuse pattern with intervening fibrovascular stroma. The cells were intermediate to large sized, polygonal with finely granular amphophilic cytoplasm. The nuclei showed mild to moderate pleomorphism and were round to ovoid, with prominent nuclei noted. No capsular invasion, vascular invasion and necrosis. Areas of hemorrhage were seen. Mitosis 0–1/10 high power field was noted (Figs. 4 and 5).

    Unlabelled Image

    1. Download : Download high-res image (1MB)
    2. Download : Download full-size image

    Fig.a Diffuse Zellbalen pattern with intervening fibrous stroma.

    Fig.b Mild to moderate pleomorphic nuclei with abundant hemorrhage.

    Fig.c Low power field with intact capsule.

    Figs. 4 and 5

    1. Download : Download high-res image (352KB)
    2. Download : Download full-size image

    Figs. 4 and 5. Fig. 4 Intra-operative resection of tumor; Fig. 5 tumor after resection.

    3. Discussion

    In Pheochromocytoma activation of the alpha-one adrenergic receptor by catecholamine in the vascular bed causes vasoconstriction and leads to a rise in blood pressure. Similarly, activation of the beta-one receptor in the heart enhances the chronotropic and inotropic effect of the myocardium, leading to an increase in heart rate and cardiac output. In addition, activation of the beta-one receptor in the juxtaglomerular cells of the kidney activates the RAAS system. These receptor activation result in cardiovascular and sympathetic changes, such as hypertension, palpitation, headache, sweating, trembling, and anxiety [10].

    In Pheochromocytoma, the patient may have a 10-fold increase in plasma catecholamines, but the hemodynamic response can still fall within the normal range due to desensitization of the cardiovascular system. When catecholamine levels are elevated for a prolonged period, the alpha-one receptors in blood vessels may be down-regulated, making norepinephrine unresponsive in raising peripheral vascular resistance, which can lead to normal blood pressure. Similarly, a marked decrease in beta-one receptors in the heart could explain the normal heart rate, which was observed in our asymptomatic patient with Pheochromocytoma [11].

    Sometimes in asymptomatic patients, the size of the tumor tends to be larger than in those with hyperfunctioning tumors [12]. However, medical interventions such as surgery, anesthesia inductionintravenous urography contrast, or manipulation of the tumor can trigger adrenergic and hypertensive crises, so biopsy is usually contraindicated in pheochromocytoma [13].

    The diagnosis of pheochromocytoma is typically based on measuring plasma and urinary levels of catecholamines and their derivatives such as metanephrine and vanillylmandelic acid. The most reliable test is the measurement of urinary metanephrine as its excretion levels are relatively higher [13,14]. The combination of 131I-MIBG scintigraphy along with diagnostic urinary and blood tests can further enhance the sensitivity of the test. Specifically, the urinary normetanephrine test is considered the most sensitive single test for detecting Pheochromocytoma [15,16].

    In addition to a 24-h urine test and blood test, if the lab results are positive for Pheochromocytoma or paragangliomas, further diagnostic tests may be recommended, such as a CT scanMRI, m-iodobenzylganidine (MIBG) imaging, or positron emission tomography (PET) [16,17]. In our patient 24 h. urine metanephrine of 5415 μg/24 h (normal: 25–312 μg/24 h.); 24 h. urine VMA of 32.2 mg/24 h. (normal: <13.60 mg/24 h.) and imaging confirmation of right adrenal mass lead to the diagnosis of right sided pheochromocytoma.

    Our patient with pheochromocytoma was tested for parathyroid hormone and calcitonin due to the association of pheochromocytoma with MEN-2 [18]. MEN-2 can be diagnosed biochemically by measuring the baseline levels of calcitonin, parathyroid hormone and serum calcium along with blood tests for catecholamines and their metabolites to detect pheochromocytoma [19]. In our patient, multiple soft, mobile, painless, subcutaneous nodules like lipoma were present over the torso(MEN-1) and high levels of parathyroid hormone and calcitonin were detected(MEN-2). These findings can be correlated with MEN syndrome.

    USG of the neck revealed no abnormalities of thyroid and parathyroid gland in our patient so prophylactic thyroidectomy was not done, instead he was counseled for follow up if any symptoms or thyroid swelling appears.

    The diagnosis of Cushing’s syndrome typically involves measuring the levels of 24-h urine free cortisol and assessing the suppression of cortisol in response to a 1 mg overnight dexamethasone test. If cortisol levels remain elevated despite the test, the next step is to measure serum ACTH levels. If ACTH levels are suppressed, it suggests an ACTH-independent cause of Cushing’s syndrome, while elevated ACTH levels suggest an ACTH-dependent cause. Further evaluation may include a CT scan of the chest, abdomen, and pelvis to identify potential ectopic sources, as well as an MRI of the pituitary gland [8]. Our patient had a high level of 24 h. urine free cortisol of 526.61 nmol/24 h (reference range: 30–145 nmol/24 h) and serum cortisol of 535.16 nmol/L(reference range: <50 nmol/L) after overnight 1 mg dexamethasone suppression test, but normal level of ACTH of 28.3 pg./ml (reference range: 7.2–63.1 ng/ml), this suggests the diagnosis of ACTH independent Cushing’s syndrome.

    4. Conclusion

    Large Pheochromocytoma patients can be asymptomatic and can present in association with other endocrine disorders. So proper evaluation is necessary to find out associated conditions and manage accordingly to prevent the possible outcomes.

    Patient consent

    Written, informed consent was obtained from the patient for the publication of the report.

    Ethical approval

    It is exempted at my institution. We don’t need to take approval from ethical committee for case report.

    Funding

    N/A.

    Author contribution

    Conceptualization: Sanjit Kumar Shah.

    Clinical diagnosis and patient management: Mahipendra Tiwari.

    Microscopic slide preparation: Sneh Acharya.

    Writing original draft: Sanjit Kumar Shah and Avish Shah.

    All authors were involved in reviewing, editing, supervision and in preparing the final

    manuscript.

    Guarantor

    Guarantor: Sanjit Kumar Shah

    Email: sanjitshah023@gmail.com

    Conflict of interest statement

    N/A.

    References

    How does COVID-19 impact the adrenal gland?

    This month marks a little over one year since the first surge of COVID-19 across the United States. April is also Adrenal Insufficiency Awareness month, a good time to review the data on how COVID-19 infection can impact the adrenal glands.

    The adrenal glands make hormones to help regulate blood pressure and the ability to respond to stress. The hormones include steroids such as glucocorticoid (cortisol), mineralocorticoid (aldosterone), and forms of adrenaline known as catecholamines (norepinephrine, epinephrine, and dopamine). The activity of the adrenal gland is controlled through its relationship with the pituitary gland (the master regulator of hormones in the body).

    Some common adrenal diseases include the following:

    • Addison’s Disease (where the body attacks the adrenal glands making them dysfunctional)
    • Hyperaldosteronism
    • Cushing’s Syndrome
    • Pheochromocytoma
    • Adrenal Nodules/Masses (termed incidentaloma)
    • Congenital adrenal hyperplasia

    COVID-19 was found in the adrenal and pituitary glands of some patients who succumbed to the illness, suggesting that these organs might be among the targets for infection.  One of the first highly effective therapies for COVID-19 infection was the use of IV steroid (dexamethasone) supplementation in hospitalized patients in patients requiring oxygen.

    A focused search of COVID-19-related health literature shows 85 peer-reviewed papers that have been published in medical literature specifically on the adrenal gland and COVID-19. This literature focuses on three phases of COVID infection that may impact the adrenal gland: the acute active infection phase, the immediate post-infection phase, and the long-term recovery phase.

    Medical research has identified that during the acute active infection, the adrenal system is one of the most heavily affected organ systems in the body in patients who have COVID-19 infection requiring hospitalization. In these cases, supplementation with the steroid dexamethasone serves as one of the most powerful lifesaving treatments.

    Concern has also been raised regarding the period of time just after the acute infection phase – particularly, the development of adrenal insufficiency following cases of COVID-19 hospitalizations. Additionally, some professional societies recommend that for patients who have adrenal insufficiency and are on adrenal replacement therapy, they be monitored closely post-COVID-19 vaccine for the development of stress-induced adrenal insufficiency.

    In mild-to-moderate COVID-19 cases, there does not seem to be an effect on adrenaline-related hormones (norepinephrine, epinephrine, dopamine). However, in cases of severe COVID-19 infection triggering the development of shock, patients will need supplementation with an infusion of catecholamines and a hormone called vasopressin to maintain their blood pressure.

    Finally, some studies have addressed the concern of adrenal insufficiency during the long-term recovery phase. Dr Sara Bedrose, adrenal endocrine specialist at  Baylor College of Medicine, indicates that studies which included adrenal function in COVID survivors showed a large percentage of patients with suboptimal cortisol secretion during what is called ACTH stimulation testing.

    Results indicated that most of those cases had central adrenal insufficiency. It was concluded that adrenal insufficiency might be among the long-term consequences of COVID-19 and it seemed to be secondary to pituitary gland inflammation (called hypophysitis) or due to direct hypothalamic damage. Long-term follow-up of COVID 19 survivors will be necessary to exclude a gradual and late-onset adrenal insufficiency.

    Some patients who have COVID-19 will experience prolonged symptoms. To understand what is happening to them, patients may question whether or not they have a phenomenon called adrenal fatigue. This is a natural question to ask, especially after having such a severe health condition. A tremendous amount of resources are being developed to investigate the source and treatment of the symptoms, and this work has only just begun.

    However, adrenal fatigue is not a real medical diagnosis. It’s a term to describe a group of signs and symptoms that arise due to underactive adrenal glands. Current scientific data indicate that adrenal fatigue is not in and of itself a medical disease – although a variety of over-the-counter supplements and compounded medications may be advocated for in treatment by alternative medicine/naturopathic practitioners.

    My takeaway is that we have learned a great deal about the effects COVID-19 infection has on the adrenal glands. Long-term COVID-19 remains an area to be explored –  especially in regards to how it may affect the adrenal glands.

    -By Dr. James Suliburk, associate professor of surgery in the Division of Surgical Oncology and section chief of endocrine surgery for the Thyroid and Parathyroid Center at Baylor College of Medicine

    From https://blogs.bcm.edu/2021/04/22/how-does-covid-19-impact-the-adrenal-gland/

    Pregnant Women with Hypertension and Hypercortisolism May Have Cushing’s

    Pregnant woman with hypertension and significant signs of hypercortisolism (high cortisol levels) may have Cushing’s disease, according to a new case report.

    The report, titled “A Case of Cushing’s Syndrome in Pregnancy,” was published in the Iranian Journal of Medical Sciences.

    While Cushing’s rarely occurs in women during pregnancy, high cortisol levels can lead to major complications for both the mother and the fetus, such as premature birth and high fetal mortality.

    However, it can be difficult to diagnose pathological hypercortisolism in these women as the symptoms might resemble other diseases that commonly occur during pregnancy, such as preeclampsia (high blood pressure during pregnancy) and gestational diabetes.

    Unfortunately, there are no effective long-term medical therapies for Cushing’s. The most definitive therapy is the surgical removal of the pituitary or adrenal adenoma, if that is the case of hypercortisolism.

    The case report details that a 29-year old women in the 27th week of pregnancy presented to the Ghaem Hospital clinic in Mashhad, Iran, with edema, weakness, and hypertension. Her symptoms also included truncal obesity, moon face (her face had a rounded appearance), purple steria on her upper and lower limbs and abdomen, excessive edema, and wet skin.

    At first, she was hospitalized for suspected preeclampsia, but the diagnosis was later excluded.

    The patient’s hormonal profile showed high levels of 24-hour urine cortisol. There were also low levels of adrenocorticotropic hormone (ACTH), which results from a negative feedback due to excessive cortisol. However, plasma cortisol is generally elevated during pregnancy, and therefore may not be the best method for diagnosis.

    An abdominal ultrasonography revealed a well-defined mass in the right adrenal gland.

    While hospitalized, the patient experienced two crises of blood pressure, and while preeclampsia was ruled out, the physicians could find no more plausible explanation than eclampsia (the onset of seizures in a women with preeclampsia).

    Since eclampsia was suspected, the physicians terminated the pregnancy at 28th week of gestation using misoprostol. The woman delivered a male infant weighing 1.94 pounds.

    Two days after birth, the physicians conducted a computed tomography (CT) scan and again found a mass in the right adrenal gland.

    As a result, the patient underwent a laparoscopic right adrenalectomy to remove the mass one week after giving birth. The patient’s blood pressure normalized and cortisol levels declined. Her condition remained stable after surgery.

    “Cushing’s syndrome should be considered in hypertensive pregnant patients with remarkable signs of hypercortisolism,” the researchers concluded. “The best results would be achieved through a collaboration between obstetricians, endocrinologists, and surgeons.”

    From https://cushingsdiseasenews.com/2017/12/19/pregnant-women-hypertension-hypercortisolism-may-have-cushings-disease/

    Blood Sample from Tributary Adrenal Gland Veins May Help to Diagnose Subclinical Cushing’s Syndrome

    Researchers report a new technique for collecting blood samples from tiny veins of the adrenal glands, called super-selective adrenal venous sampling (ssAVS). The technique can be used to help diagnose diseases marked by excessive release of adrenal hormones, such as subclinical Cushing’s syndrome (SCS) or primary aldesteronism (PA).

    The study, titled “A Novel Method: Super-selective Adrenal Venous Sampling,” was published in JOVE, the Journal of Visualized Experiments. JOVE has also made a video that demonstrates the procedure.

    The adrenal glands are a pair of glands found above the kidneys that produce a variety of hormones, including adrenaline and the steroids aldosterone and cortisol. Excessive production of cortisol in the adrenal glands is the cause SCS, and aldosterone of PA.

    These glands have central veins running through them, and three tributary veins (veins that empty into a larger vein). Conventional AVS collects blood from the central veins, but these veins have blood from the adrenal glands as well as blood in wider circulation flowing through them.

    ssAVS uses tiny catheters — very long, narrow tubes inserted into blood vessels, called microcatheters — to collect blood from the tributary veins in both adrenal glands. Only blood from the adrenal glands flows through the tributary veins, making analysis of hormone levels easier, and pinpointing the region, or segment, of the gland that is not working properly.

    A medical imaging technique, known as angiography, is used to track the positions of the microcatheters. Angiography is a procedure widely used to visualize the inside of blood vessels and organs, and takes roughly 90 minutes.

    The paper reported on the use of ssAVS in three patients with adrenal gland disorders, and one (case #2) was diagnosed with SCS and PA. “Overall, in Cases #1 and #2, the ssAVS method clearly indicated segmental adrenal hormone production, not only for aldosterone, but for cortisol, and enabled these patients to be treated by surgery,”  the researchers reported.

    Conventional AVS measures hormone levels in whole glands. It is useful for identifying which of the two glands is diseased, and the type of hormone that is overproduced. But sometimes both glands are affected, and only removal of the diseased parts in both glands is safe and effective.

    That’s one of the reasons why ssAVS is so useful. By sampling the smaller, tributary veins in three different regions of each gland, the diseased parts can be identified. The diseased parts can then be removed from both glands, if medically advisable, leaving the healthy parts of the glands intact and functional.

    ssAVS is also useful because it collects samples of blood coming directly from the adrenal glands, making analysis of hormone levels more reliable.

    Researchers concluded that ssAVS is useful in both the diagnosis of adrenal gland disorders and for research that might lead to new therapies.

    “Between October 2014 and September 2015, two angiographers … performed ssAVS on 125 cases … with a 100 % success rate and within a reasonable time (58 – 130 min) without adrenal rupture or thrombosis that required surgery,” they wrote. “The ssAVS method is not difficult for expert angiographers, and, thus, is recommended worldwide to treat PA cases for which cAVS does not represent a viable surgical treatment option.”

    From https://cushingsdiseasenews.com/2017/10/17/subclinical-cushings-syndrome-may-be-diagnosed-via-blood-from-tributary-adrenal-gland-veins/

    Adrenal Insufficiency: Primary and Secondary

    By Dr Tomislav Meštrović, MD, PhD

    Adrenal insufficiency is a condition that develops when most of the adrenal gland is not functioning normally. Primary adrenal insufficiency arises due to the damage of the glands or because of using drugs that halt synthesis of cortisol. On the other hand, secondary adrenal insufficiency stems from processes that inhibit the secretion of the adrenocorticotropic hormone (ACTH) by the hypophysis as a result of a hypothalamic or pituitary pathology. The former is sometimes also referred to as tertiary adrenal insufficiency.

    Adrenal insufficiency is still a significant challenge for both patients and their physicians, but also scientists and researchers. In the past decade, long-term studies with adequate follow-up have shown a surge in mortality and morbidity, as well as impaired quality of life in individuals with this condition.

    Primary Adrenal Insufficiency

    In developed countries, the most common cause of primary adrenal insufficiency is autoimmune adrenalitis, whereas in the developing world tuberculosis is still considered a primary causative factor. Moreover, in young males, an X-linked adrenoleukodystrophy (also known as the less severe form of adrenomyeloneuropathy) must also be considered.

    Histopathologically, in autoimmune primary adrenal insufficiency, there is a diffuse mononuclear cell infiltrate that can gradually progress to atrophy. Primary adrenal insufficiency is linked to both cortisol and mineralocorticoid deficiency.

    Recent research drew attention to drug-related and infectious causes of adrenal insufficiency. Antifungal agents are known to substantially reduce cortisol synthesis, while imunosuppression associated with human immunodeficiency virus (HIV) has resulted in a resurgence of infectious causes, most notably tuberculous and CMV adrenalitis.

    Secondary Adrenal Insufficiency

    Secondary adrenal insufficiency has three principal causes: adrenal suppression after exogenous glucocorticoid or ACTH administration, abnormalities of the hypothalamus or pituitary gland that lead to ACTH deficiency, as well as adrenal suppression upon the correction of endogenous glucocorticoid hypersecretion.

    Any lesion of the hypophysis or hypothalamus can result in secondary adrenal insufficiency; some of the examples are space-occupying lesions such as adenomas, craniopharyngiomas, sarcoidosis, fungal infections, trauma, and also metastases from distant malignant processes.

    The histologic appearance of the adrenal glands in secondary adrenal insufficiency can range from normal to complete atrophy of the cortex (with preserved medulla). In contrast to primary adrenal insufficiency, secondary types are associated with the lack of cortisol, but not mineralocorticoid deficiency.

    Clinical Features of Adrenal Insufficiency

    The clinical presentation of adrenal insufficiency is related to the rate of onset and severity of adrenal deficiency. In a large number of cases, the disease has a gradual onset, thus the diagnosis can be made only when the affected individual presents with an acute crisis due to an inadequate rise in cortisol secretion during a physiologic stress. Such acute adrenal insufficiency (also known as the Addisonian crisis) is a medical emergency.

    On the other hand, the course of chronic adrenal insufficiency is more subtle and insidious, with the predomination of symptoms such as fatigue, weakness, weight loss, diarrhea or constipation, muscle cramps, pain in joints and postural hypotension (low blood pressure). Salt craving and low-grade fever may also be present.

    The classic physical finding that can help in differentiating primary from secondary adrenal failure is hyperpigmentation of the skin or the “suntan that does not fade”. Furthermore, patients with secondary adrenal insufficiency may present with additional symptoms related to pituitary disease (e.g., menstrual disturbances, loss of libido, galactorrhea, or hypothyroidism).

    Laboratory Findings and Management

    In cases of adrenal insufficiency, the complete blood count usually reveals anemia, neutropenia, eosinophilia, and relative lymphocytosis. Common chemical abnormalities include metabolic acidosis and prerenal azotemia, while hyponatremia, hypoglycemia, and hyperkalemia may also be present.

    A cosyntropin stimulation test (also known as ACTH or Synacthen test) is required to establish the diagnosis of adrenal insufficiency. Magnetic resonance imaging (MRI) of the hypophysis in secondary adrenal insufficiency and computed tomography (CT) of the adrenal glands in primary adrenal insufficiency can aid in establishing a diagnosis. The adrenal glands appear normal in cases of autoimmune disorder.

    Glucocorticoid replacement in patients with adrenal insufficiency can be lifesaving. Nevertheless, renal crisis is still a threat to patients’ lives, which is why awareness and adequate preventative measures receive increasing attention in the recent years.

    Reviewed by Susha Cheriyedath, MSc

    From http://www.news-medical.net/health/Adrenal-Insufficiency-Primary-and-Secondary.aspx