Sloan Kettering (New York City) Clinical Trials & Research

 

Clinical trials are research studies that test new treatments to see how well they work. Our Pituitary and Skull Base Tumor Center is leading clinical trials investigating new medical therapies for patients with Cushing’s disease and acromegaly. They are also involved in quality-of-life studies aimed at improving long-term follow-up care for patients who need it.

Our experts can help determine which clinical trials are right for you. The following clinical trials for pituitary tumors are currently enrolling new patients.

To learn more about a particular study, choose from the list below. For more information about our research and clinical trials, call us at 212-639-3935, or talk with your doctor.

Cushing’s Testing at NIH

Rank Status Study
1 Recruiting Study to Evaluate CORT125134 in Patients With Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: CORT125134
2 Recruiting Cushing’s Disease Complications

Condition: Cushing’s Disease
Intervention: Other: Exams and questionnaires
3 Recruiting The Accuracy of Late Night Urinary Free Cortisol/Creatinine and Hair Cortisol in Cushing’s Syndrome Diagnosis

Condition: Cushing Syndrome
Intervention:
4 Recruiting Treatment for Endogenous Cushing’s Syndrome

Condition: Endogenous Cushing’s Syndrome
Intervention: Drug: COR-003
5 Recruiting Saliva Cortisol Measurement as a Screening Test for Suspicious Cushings Syndrome in Children.

Condition: Cushings Syndrome
Intervention: Other: Children refered to the obesity clinic
6 Recruiting Safety and Efficacy of LCI699 for the Treatment of Patients With Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Drug: LCI699
7 Recruiting Treatment of Cushing’s Disease With R-roscovitine

Condition: Cushings Disease
Intervention: Drug: R-roscovitine
8 Recruiting A Study of ATR-101 for the Treatment of Endogenous Cushing’s Syndrome

Condition: Cushing Syndrome
Interventions: Drug: ATR-101;   Drug: Placebos
9 Recruiting Evaluation of 68Ga-DOTATATE PET/CT, Octreotide and F-DOPA PET Imaging in Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: F-DOPA PET Scan;   Drug: Mifepristone;   Drug: Ga-DOTATATE;   Drug: Octreoscan;   Other: CT, MRI
10 Not yet recruiting Endocrine Cardiomyopathy in Cushing Syndrome: Response to Cyclic GMP PDE5 inhibitOrs

Condition: Cushing’s Syndrome Cardiomyopathy
Intervention: Drug: Tadalafil
11 Recruiting Long-term Beneficial Metabolic Effects of Adrenalectomy in Subclinical Cushing’s Syndrome of Adrenal Incidentaloma

Condition: Cushing Syndrome
Intervention: Procedure: surgery
12 Recruiting Long Term Safety and Efficacy of Pasireotide s.c. in Patients With Cushing’s Disease

Condition: Cushings Disease
Intervention: Drug: SOM230
13 Recruiting New Imaging Techniques in the Evaluation of Patients With Ectopic Cushing Syndrome

Condition: Cushing Syndrome
Interventions: Drug: Pentetreotide;   Drug: 18-F-fluorodeoxyglucose;   Drug: (18F)-L-3,4-dihydroxyophenylalanine (18F-DOPA)
14 Not yet recruiting Targeting Iatrogenic Cushing’s Syndrome With 11β-hydroxysteroid Dehydrogenase Type 1 Inhibition

Condition: Iatrogenic Cushing’s Disease
Interventions: Drug: AZD4017 and prednisolone;   Drug: Placebo Oral Tablet and prednisolone
15 Not yet recruiting Assessment of Persistent Cognitive Impairment After Cure of Cushing’s Disease

Condition: Cushing’s Disease
Intervention: Device: Virtual radial task in 3D
16 Recruiting Biomarker Expression in Patients With ACTH-Dependent Cushing’s Syndrome Before and After Surgery

Condition: Cushing’s Syndrome
Intervention:
17 Recruiting Efficacy and Safety Evaluation of Osilodrostat in Cushing’s Disease

Condition: Cushing’s Disease
Interventions: Drug: osilodrostat;   Drug: osilodrostat Placebo
18 Recruiting Effects of Metyrapone in Patients With Endogenous Cushing’s Syndrome

Condition: Cushing’s Syndrome
Intervention: Drug: metyrapone
19 Recruiting Adrenal Venous Sampling in Patients With Overt or Subclinical Cushings Syndrome, and Bilateral Adrenal Tumors

Condition: Cushing Syndrome
Intervention: Radiation: Adrenal venous sampling
20 Recruiting Glycemic Fluctuations in Newly Diagnosed Growth Hormone-Secreting Pituitary Adenoma and Cushing Syndrome Subjects

Condition: Pituitary Adenoma
Intervention: Device: continuous glucose monitoring
Rank Status Study
21 Recruiting Targeted Therapy With Gefitinib in Patients With USP8-mutated Cushing’s Disease

Conditions: Cushing’s Disease;   Corticotrophin Adenoma
Intervention: Drug: Gefitinib
22 Recruiting Cardiac Steatosis in Cushing’s Syndrome

Conditions: Endocrine System Disease;   Cardiovascular Imaging
Intervention: Other: 1H magnetic resonance spectroscopy and CMRI
23 Recruiting Study of Management of Pasireotide-induced Hyperglycemia in Adult Patients With Cushing’s Disease or Acromegaly

Conditions: Cushing’s Disease;   Acromegaly
Interventions: Drug: Pasireotide s.c.;   Drug: Sitagliptin;   Drug: Liraglutide;   Drug: Insulin;   Drug: Pasireotide LAR;   Drug: Metformin
24 Recruiting Study of Efficacy and Safety of Osilodrostat in Cushing’s Syndrome

Conditions: Cushing’s Syndrome;   Ectopic Corticotropin Syndrome;   Adrenal Adenoma;   Adrenal Carcinoma;   AIMAH;   PPNAD
Intervention: Drug: Osilodrostat
25 Recruiting Effects of Hormone Stimulation on Brain Scans for Cushing s Disease

Condition: Pituitary Neoplasm
Intervention: Drug: Acthrel
26 Recruiting Does Serum-DXM Increase Diagnostic Accuracy of the Overnight DXM Suppression Test in the Work-up of Cushing’s Syndrome?

Conditions: Cushing’s Syndrome;   Adrenal Incidentalomas;   Alcoholism;   Obesity
Intervention:
27 Recruiting Adrenalectomy Versus Follow-up in Patients With Subclinical Cushings Syndrome

Condition: Adrenal Tumour With Mild Hypercortisolism
Intervention: Procedure: Adrenalectomy
28 Recruiting Study of Adrenalectomy Versus Observation for Subclinical Hypercortisolism

Conditions: Hypercortisolism;   Cushing Syndrome
Interventions: Procedure: Adrenalectomy;   Other: Observation
29 Not yet recruiting Dynamic Hormone Diagnostics in Endocrine Disease

Conditions: Adrenal Insufficiency;   Congenital Adrenal Hyperplasia;   Cushing Syndrome;   Growth Hormone Deficiency;   Acromegaly;   Primary Hyperaldosteronism
Intervention: Other: 27 hour subcutaneous fluid sampling
30 Recruiting An Investigation of Pituitary Tumors and Related Hypothalmic Disorders

Conditions: Abnormalities;   Craniopharyngioma;   Cushing’s Syndrome;   Endocrine Disease;   Pituitary Neoplasm
Intervention:
31 Recruiting Ga-68-DOTATOC -PET in the Management of Pituitary Tumours

Condition: Pituitary Tumours
Intervention: Procedure: Gallium-68 DOTATOC PET
32 Recruiting Efficacy of Mifepristone in Males With Type 2 Diabetes Mellitus

Conditions: Type 2 Diabetes Mellitus;   Insulin Resistance
Interventions: Drug: Mifepristone 600 mg daily;   Drug: Placebo
33 Recruiting Targeted Therapy With Lapatinib in Patients With Recurrent Pituitary Tumors Resistant to Standard Therapy

Conditions: Pituitary Adenomas;   Prolactinomas
Intervention: Drug: Lapatinib
34 Recruiting Mutations of Glucocorticoid Receptor in Bilateral Adrenal Hyperplasia

Condition: General Glucocorticoid Resistance
Intervention: Genetic: blood collection for mutation characterization
35 Recruiting Defining the Genetic Basis for the Development of Primary Pigmented Nodular Adrenocortical Disease (PPNAD) and the Carney Complex

Conditions: Cushing’s Syndrome;   Hereditary Neoplastic Syndrome;   Lentigo;   Neoplasm;   Testicular Neoplasm
Intervention:
36 Not yet recruiting Reduction by Pasireotide of the Effluent Volume in High-output Enterostomy in Patients Refractory to Usual Medical Treatment

Condition: Enterostomy
Interventions: Drug: Pasireotide;   Drug: Placebo
37 Recruiting Mifepristone for Breast Cancer Patients With Higher Levels of Progesterone Receptor Isoform A Than Isoform B.

Condition: Breast Cancer
Intervention: Drug: Mifepristone
38 Recruiting SOM230 Ectopic ACTH-producing Tumors

Condition: Ectopic ACTH Syndrome
Intervention: Drug: Pasireotide
39 Recruiting Decreasing Rates of Intraurethral Catheterization Postoperatively in Spine Surgery

Condition: Post-operative Urinary Retention
Interventions: Drug: Tamsulosin;   Drug: Placebo
40 Recruiting Adrenal Tumors – Pathogenesis and Therapy

Conditions: Adrenal Tumors;   Adrenocortical Carcinoma;   Cushing Syndrome;   Conn Syndrome;   Pheochromocytoma
Intervention:

COR-003 Clinical Trial for Cushing’s Syndrome

CureClick_Trial_Card_CushingsBLU2

 

This trial is testing the safety and effectiveness of an investigational drug for the treatment of Cushing’s Syndrome. Under the supervision of qualified physicians, cortisol levels and symptoms of Cushing’s Syndrome will be closely followed along with any signs of side effects.

More about the study:

The study drug (COR-003) is administered by tablets.

  • There will be 90 participants in this trial
  • There is no placebo used in the trial

If you are interested, please find the full study details and eligibility criteria listed here.

Eligibility Criteria:

Participants must:

  • be at least 18 years old
  • have been diagnosed with endogenous Cushing’s Syndrome by a medical professional (not caused by the use of steroid medications)

Participants must not:

  • have been treated with radiation for Cushing’s Syndrome in the past 4 years
  • be currently using weight loss medication
  • have been diagnosed with uncontrolled hypertension, some forms of cancer, adrenal carcinoma, Hepatitis B / C, or HIV

Please complete the online questionnaire to check if you’re eligible for the trial.

If you’re not familiar with clinical trials, here are some FAQs:

What are clinical trials?

Clinical trials are research studies to determine whether investigational drugs or treatments are safe and effective for humans. All new investigational medications and devices must undergo several clinical trials, often involving thousands of people.

Why participate in a clinical trial?

You will have access to investigational treatments that would be available to the general public only upon approval. You will also receive study-related medical care and attention from clinical trial staff at research facilities. Clinical trials offer hope for many people and an opportunity to help researchers find better treatments for others in the future.

Learn why I’m posting about this Clinical Trial

Global Cushing’s Syndrome Market Size 2015

Cushing’s as money makers for drug companies 😦

~~~

Steroidogenesis inhibitors were responsible for approximately 28% of total drug sales in the 6MM in 2013, equating to around $50m. As a consequence of this trend, GlobalData expects overall revenues generated by this drug class to increase by approximately 390% to reach around $247m, encompassing 49% of total drug sales in the 6MM in 2018.

The expansion in this segment of the CS market is fuelled by the introduction of premium-priced pharmacological agents such as Novartis’ LCI699 and Cortendo AB’s NormoCort (COR-003) in the US, as well as the arrival of HRA Pharma’s Ketoconazole HRA (ketoconazole) to the European CS stage. One of the greatest unmet needs in this indication is a lack of effective drugs directed against the underlying cause of Cushing’s disease (the pituitary tumor).

Despite this demand, pharmaceutical companies are continuing to adopt a strategy that simply targets the adrenal glands. As a result, there is a vast amount of room for new or existing players to penetrate the market and capture considerable patient share.

Highlights

Key Questions Answered

Although the current standard of care (ketoconazole) is cheap and reasonably effective in most CS patients, it possesses worrying safety profiles, inconvenient dosing schedules, is difficult to obtain and can display waning efficacy over time. Newer medical treatments, for example, Novartis’ Signifor (pasireotide) and Corcept Therapeutics’ Korlym (mifepristone) address only some of these issues; yet, present their own limitations. The CS market is still marked by the existence of a multitude of unmet needs. What are the main unmet needs in this market? Will the drugs under development fulfil the unmet needs of the CS market?

The late-stage CS pipeline is sparsely populated; however, those drugs in development will be a strong driver of CS market growth. Which of these drugs will attain high sales revenues during 2013-2018? Which of these drugs will have the highest peak sales at the highest CAGR, and why?

Key Findings

One of the main drivers influencing growth in the Cushing’s syndrome market will be the introduction of second-generation steroidogenesis inhibitors, LCI699 and NormoCort (COR-003), in the US, which will rival existing standard of care medical treatments.

Another strong driver will be the arrival of Corcept Therapeutics’ Korlym (mifepristone) and HRA Pharma’s Ketoconazole HRA (ketoconazole) to the European CS market. Both drugs will stimulate significant growth here.

The launch of Novartis’ Signifor LAR (pasireotide) in the 6MM will equip physicians with a less frequently administered formulation of Signifor.

Reasons for inadequate CS treatment include poor physician awareness of the condition, delayed diagnosis, a lack of efficacious drugs for individuals suffering from severe hypersecretion, and a shortage of effective medicines targeting the source of Cushing’s disease.

Scope

Overview of Cushing’s syndrome, including epidemiology, etiology, pathophysiology, symptoms, diagnosis, and treatment guidelines.

Annualized Cushing’s syndrome therapeutics market revenues, annual cost of therapies and treatment usage pattern data from 2013 and forecast for five years to 2018.

Key topics covered include strategic competitor assessment, market characterization, unmet needs, clinical trial mapping and implications for the Cushing’s syndrome therapeutics market.

Pipeline analysis: comprehensive data split across different phases, emerging novel trends under development, and detailed analysis of late-stage pipeline drugs.

Analysis of the current and future market competition in the global Cushing’s syndrome therapeutics market. Insightful review of the key industry drivers, restraints and challenges. Each trend is independently researched to provide qualitative analysis of its implications.

Reasons to buy

Develop and design your in-licensing and out-licensing strategies through a review of pipeline products and technologies, and by identifying the companies with the most robust pipeline. Additionally a list of acquisition targets included in the pipeline product company list.

Develop business strategies by understanding the trends shaping and driving the Cushing’s syndrome therapeutics market.

Drive revenues by understanding the key trends, innovative products and technologies, market segments, and companies likely to impact the Cushing’s syndrome therapeutics market in the future.

Formulate effective sales and marketing strategies by understanding the competitive landscape and by analysing the performance of various competitors.

Identify emerging players with potentially strong product portfolios and create effective counter-strategies to gain a competitive advantage.

Track drug sales in the 6MM Cushing’s syndrome therapeutics market from 2013-2018.

Organize your sales and marketing efforts by identifying the market categories and segments that present maximum opportunities for consolidations, investments and strategic partnerships.

From http://www.medgadget.com/2015/10/global-cushings-syndrome-market-size-2015-share-trend-analysis-price-research-report-forecast.html

An Open Label Study to Assess the Safety and Efficacy of COR-003 (2S, 4R ketoconazole) in the Treatment of Endogenous Cushing’s Syndrome

RESEARCH STUDY SUMMARY

An Open Label Study to Assess the Safety and Efficacy of COR-003 (2S, 4R ketoconazole) in the Treatment of Endogenous Cushing’s Syndrome

PURPOSE

The primary objectives of this study are to evaluate the efficacy of ascending doses of COR-003 in subjects with elevated levels of cortisol due to endogenous Cushing’s Syndrome by assessment of reduction in Urinary Free Cortisol (UFC) concentrations and to identify the range of safe and effective doses of COR-003 that reduce mean UFC concentrations ≤ULN (upper limit of normal) of the assay at month 6 of the maintenance phase of dosing without a prior dose increase in that phase.

TO LEARN MORE

CW ID: 208654
Date Last Changed: June 25, 2015

Inclusion Criteria:

Subjects eligible for enrollment in the study must meet all the following criteria:

  • Male or female, ≥18 year of age
  • Confirmed diagnosis of persistent or recurrent CS (with or without therapy) or newly diagnosed disease, if they are not candidates for surgery. Subjects in whom surgery will be delayed beyond 5 months will be permitted to participate. CS will be defined according to the criteria in the guidelines for diagnosis of CS (Nieman 2008). Previous medical records will be collected and used to support the diagnosis. The diagnostic criteria for appropriateness of inclusion of each subject into the study will be reviewed by the Medical Monitor. Diagnosis of the disease will be based on the association of clinical features of endogenous CS (see Appendix G in clinical protocol), review of past medication history, excluding exogenous sources of glucocorticoids, and abnormal values from two of the three following tests:
    • Elevated 24-hour UFC levels ≥1.5X ULN of assay based on a minimum of 4 measurements from adequately collected urine. Urine may be collected on sequential days.
    • Abnormal DST: Elevated 8 AM serum cortisol ≥1.8 ug/dL (50 nmol/L) after 1 mg dexamethasone orally at 11 PM the evening prior (if not conducted already in the diagnostic workup of the subject within the previous 6 months; previous test results and details of conduct will need to be available; normal serum cortisol ≤ 1.4 ug/dL)
    • Elevated late night salivary cortisol concentrations (at least 2 measurements) >ULN at screening
    • [NOTE: For subjects with estimated glomerular filtration rate (eGFR as determined by MDRD equation >40 and <60 mL/min) a late night salivary cortisol test (≥2 measurements) MUST be conducted in addition to measuring UFC levels to demonstrate evidence of CS.]
  • Previously irradiated subjects will be allowed as long as the radiation treatment occurred ≥2 years ago and they do have stable UFC levels based on 24-hour urine collections for at least 6 months. The total number of previously irradiated subjects will not exceed 10.
    • In the vast majority of subjects treated with radiation, efficacy is observed in <2 years.
  • Confirmed diagnosis of persistent or recurrent endogenous hypercortisolemia as defined by UFC concentrations on repeated determinations (described in Inclusion #2) caused by either ACTH-dependent or ACTH-independent etiologies.
  • Subjects on treatment for CS for whom treatment has been inadequate or not well tolerated must agree to the following minimum washout periods as determined by the nature of their treatment before baseline assessments are performed for participation in this study:
    • Inhibitors of steroidogenesis: 2weeks; subjects on ketoconazole will be considered inadequately treated if they had failed to normalize UFC with a dose lower than or equal to 600 mg/day (also see Exclusion 7 below).
    • Dopamine agonists: bromocriptine (2 week), cabergoline (8 weeks)
    • Octreotide acetate LAR and lanreotide AutogelÂŽ: 12 weeks
    • Lanreotide SR/long-acting pasireotide: 8 weeks
    • Octreotide acetate (immediate release formulation) or short-acting pasireotide: 1 week
    • Mifepristone (RU 486): 4 weeks
  • Subjects on megasterol acetate (medroxyprogesterone acetate) must agree to a wash out of ≥6 weeks prior to receiving the first dose of the study medication.
  • Female subjects should be either post-menopausal, surgically sterile, or women of child-bearing potential (WOCP) with a negative serum beta human chorionic gonadotropin (ßhCG) pregnancy test prior to entering the study and who agree to use an acceptable method of contraception, for the duration of the study. Condoms will be considered an acceptable form of contraceptive.
  • 12-lead ECGs show no acute ischemia or clinically significant abnormality needing medical intervention
  • Ability to comprehend and comply with procedures
  • Agree to commit to participate in the current protocol
  • Subjects provide written informed consent prior to any study procedures being performed (all subjects should be able to understand the informed consent form and any other documents that subjects are required to read)

Exclusion Criteria:

Subjects will be excluded from the study if any of the following criteria are met:

  • De novo Cushing´s disease AND a candidate for pituitary surgery
    • If surgery is to be delayed for >5 months, subjects may be allowed to participate in the trial while awaiting surgery, but must agree to complete this study prior to surgery.
  • Subjects treated with radiation within the previous 2 years.
    • In the vast majority of subjects treated with radiation, efficacy is observed in <2 years.
  • Characteristics of pseudo-CS (see Appendix H in clinical protocol)
  • Subjects with adrenal carcinoma
  • Body Mass Index (BMI) exceeding 50 kg/m2
  • Body habitus preventing repeated venipuncture as required by protocol
  • Subject is currently in another study or has received any investigational treatment (drug, biological agent or device) within 30 days or 5 half lives of screening, whichever is longer
  • History of significant abnormalities in liver function tests on ketoconazole; history of therapeutic response failure to ketoconazole as defined by lack of normalization of UFC at a dose greater than 800 mg/day; lack of therapeutic response failure at maximum dose of mitotane
  • Male and female subjects with QTc interval of >470 msec
  • History of Torsades des Pointes or ventricular tachycardia or ventricular fibrillation
  • Subjects with a non-endogenous source of hypercortisolemia such as exogenous source of glucocorticoids or therapeutic use of ACTH
  • History of malignancy, other than thyroid, early stage prostate, squamous cell and basal cell carcinoma, within 3 years prior to the initial dose of the study medication. Subjects with history of carcinoma must have a life expectancy of >1 year and must be on stable doses of their specific therapies. Subjects with early stage prostate cancer undergoing no treatment due to low grade potential may be enrolled.
  • Diagnosis of HIV
  • History of persistent uncontrolled hypertension (>210/110 mmHg) despite medical intervention
  • Subjects with hypercholesterolemia who are on current atorvastatin or simvistatin and not willing or unable to change to alternative therapies as noted (pravastatin, fluvastatin, and rosuvastatin) with 2 weeks of study screening
  • Subjects with T2DM or with a history of hyperglycemic episodes requiring repeated, frequent hospitalizations
  • Subjects with decreased renal function as defined by eGFR ≤40 mL/min, using Modified Diet in Renal Disease (MDRD) equation for estimating renal function (eGFR).
  • Any other clinically significant medical condition, as determined by the Investigator that precludes enrollment and participation in the study through completion (for example, New York Heart Association (NYHA) class III or IV congestive heart failure).
  • Known hepatic disease, other than mild to moderate hepatic steatosis consistent with fatty infiltration (non-alcoholic steatohepatitis [NASH]), with ongoing sustained biochemical activity (subjects with CS would be at risk for NASH)
  • History of recurrent gall stone attacks or pancreatitis
  • Positive for hepatitis B surface antigen (HbsAg) or positive hepatitis C test
  • Liver function tests (LFT) must not be above the following cut-offs at screening: ALT and/or AST >3.0X ULN, alkaline phosphatase (AP) >1.5X ULN and total bilirubin >ULN. If all LFTs are within normal limits (WNL) and total bilirubin is elevated, examination of direct and indirect bilirubin may be conducted. Subjects with indirect total bilirubin up to 3X ULN are presumed to have Gilbert’s syndrome and may be enrolled if all other LFTs are WNL.
  • Presence of any other clinically significant medical condition, as determined by the Investigator that would preclude the subject from being able to follow instructions or to perform the necessary procedures (for example, psychiatric instability or severe disability)
  • Compression of the optic chiasm
  • Abnormal free T4. Subjects with TSH
  • Excessive alcohol intake (>20 g per day for females (1.5 standard alcohol drinks) or >30 g per day for males (2.0 standard alcohol drinks) (a standard drink contains 14 g of alcohol: 12 oz of beer, 5 oz of wine or 1.5 oz of spirits) or drug abuse. (1.0 fluid oz (US) = 29.57 ml)
  • The subject is currently taking any H2 receptor antagonists or proton-pump inhibitors (which inhibit absorption of COR-003). Only over-the- counter liquid and tablet antacids are allowed which should be used in moderation and taken a minimum of 2 hours after dosing of COR-003.
  • The subject is receiving the following concomitant therapies:
    • Weight loss medications (prescription or over the counter)
    • Coadministration of COR-003 and drugs primarily metabolized by the cytochrome P450 3A4 enzyme system may result in increased plasma concentrations of the drugs that could increase or prolong both therapeutic and/or adverse effects. Therefore, appropriate dosage adjustments may be necessary.
    • Medications with metabolism largely mediated by CYP3A4 and a narrow therapeutic margin include: cyclosporine, midazolam, triazolam, alprazolam, digoxin, coumarin-derivatives, phenytoin, rifampin, erythromycin, clarithromycin, loratadine, astemizole, terfenadine, nicotinic acids, resins, orlistat, sibutramine, HIV protease inhibitors, thiazolidinodiones, aliskiren, and spironolactone.
    • A complete list of medications metabolized by or with an effect on cytochrome P450 3A4 is provided in Appendix K. Also see Section 10.2.
    • Coadministration of strong inducers or inhibitors of CYP3A4 enzyme system that may interfere with COR-003 and cannot be discontinued prior to the start of the study (see Appendix K for the list)
    • Statins other than pravastatin, fluvastatin and rosuvastatin
    • Following herbal medicines should be avoided: St John’s Wort, yohimbe and red rice yeast
    • Potent topical steroids, containing urea or salicylic acid, which are applied over 20% of the body
    • Inhaled steroid medications that exceed minimal to moderate use
    • Carbamazipine, fenofibrate, carbenoxolone
    • Excessive ingestion of genuine licorice
  • Pregnant or lactating women
  • Any other condition which would increase the risk of participation in the trial in the opinion of the Investigator

Contact

Adrine Gdakian
UCLA School of Medicine
700 Tiverton Avenue, Factor Building Rm 9-240
Los Angeles, CA 90095
Phone: 310-825-5874
Fax: 310-206-5553

Jessica Rios-Santiago
Coastal Metabolic Research Center University Medical Center, Dept. of Endocrinology
3454 Loma Vista Rd.
Ventura, CA 93003
Phone: 805-658-8460
Fax: 805-658-8462

Betsy Parrott, RN, CCRC
Rhode Island Hospital, Hallett Center for Diabetes and Endocrinology
900 Warren Avenue, Suite 300
East Providence, RI 02914
Phone: 401-444-2091
Fax: 401-444-4921

Becky Wood, CCRP
Swedish Neuroscience Research
500 17th Ave
Professional Bldg 303
Seattle, WA 98122
Phone: 206-320-7115

%d bloggers like this: