Preoperative medical treatment in Cushing’s syndrome.

European Journal of Endocrinology — | February 14, 2018

Valassi E, et al. – This study was performed to assess how frequently preoperative medical treatment (PMT) was given to Cushing’s syndrome (CS) patients across Europe and to investigate differences in preoperative characteristics of patients who receive PMT and those who undergo primary surgery. In addition, the physicians determined if PMT influenced the postoperative outcome in pituitary-dependent CS (PIT-CS). In contrast with adrenal-dependent CS (ADR-CS), CS from an ectopic source (ECT-CS) and PIT-CS exhibited greater likelihood of receiving PMT. Data reported more severe clinical features at the diagnosis and poorer quality of life in PIT-CS patients treated with PMT. The interpretation of immediate postoperative outcome could be confounded with PMT. They recommended follow-up to definitely evaluate surgical results.

Methods

  • A total of 1,143 CS patients entered into the ERCUSYN database from 57 centres in 26 countries.
  • During this study, 69% patients presented with PIT-CS, 25% adrenal-dependent CS (ADR-CS), 5% CS from an ectopic source (ECT-CS), and 1% were classified as having CS from other causes (OTH-CS).

Results

  • In this study, 20% of patients took PMT.
  • PMT was offered more frequently in ECT-CS and PIT-CS compared to ADR-CS (p < 0.001).
  • Ketoconazole (62%), metyrapone (16%), and a combination of both (12%) were the most commonly used drugs.
  • The median (interquartile range) duration of PMT was 109 (98) days.
  • More severe clinical features at diagnosis and poorer quality of life were noted in PIT-CS patients treated with PMT compared to those undergoing primary surgery (SX) (p < 0.05).
  • PIT-CS patients treated with PMT were more likely to have normal cortisol (p < 0.01) and a lower remission rate (p < 0.01) within 7 days of surgery.
  • Between SX and PMT groups, no differences in morbidity or remission rates were observed within 6 months of surgery.

Read the full article on European Journal of Endocrinology

Common Cushing’s Treatment, Somatostatin Analogs, May Sometimes Worsen Disease Course

Doctors often prescribe somatostatin analogs to manage the hormonal imbalance that characterizes Cushing’s syndrome. However, in rare situations these medicines have paradoxically made patients worse than better.

This recently happened with a 48-year-old Spanish woman whose Cushing’s syndrome was caused by an adrenal gland tumor that was producing excess adrenocorticotropic hormone (ACTH). Her case was recently reported in the study “Ectopic Cushing’s syndrome: Paradoxical effect of somatostatin analogs,” and published in the journal Endocrinología, Diabetes y Nutrición.

Cushing’s syndrome occurs when the body produces too much cortisol. This can happen for many reasons, including an oversupply of ACTH, the hormone responsible for cortisol production, due to a tumor in the pituitary gland.

But sometimes, tumors growing elsewhere can also produce ACTH. This feature, known as ectopic ACTH secretion (EAS), may also cause ACTH-dependent Cushing’s syndrome.

Two-thirds of EAS tumors are located in the thorax, and 8 to 15 percent are in the abdominal cavity. Only 5 percent of EAS tumors are located in the adrenal gland, and up to 15 percent of EAS tumors are never detected.

Doctors usually use cortisol synthesis inhibitors such as ketoconazole or Metopirone (metyrapone) to control EAS, due to their efficacy and safety profiles. But somatostatin analogs (SSAs) such as Somatuline (lanreotide) have also been used to treat these tumors. However, these drugs produce mixed results.

The woman in the case study, reported by researchers at the University Hospital Vall d’Hebron in Barcelona, Spain, had an EAS tumor on the adrenal gland. She experienced s life-threatening cortisol and ACTH increase after receiving high-dose Somatuline.

The patient had been recently diagnosed with hypertension, and complained of intense fatigue, muscular weakness, easy bruising and an absence of menstruation. Laboratory analysis revealed that she had triple the normal levels of free cortisol in the urine, elevated levels of plasma cortisol, and high ACTH levels. In addition, her cortisol levels remained unchanged after receiving dexamethasone. The patient was therefore diagnosed with ACTH-dependent Cushing syndrome.

To determine the origin of her high cortisol levels, the team conducted magnetic resonance imaging (MRI). They found no tumors on the most common places, including the pituitary gland, neck, thorax or abdomen. However, additional evaluation detected a small alteration on the left adrenal gland, suggesting that was the source of ectopic ACTH production.

The team initiated treatment with 120 mg of Somatuline, but a week later, her condition had worsened and become life-threatening. Doctors started Ketoconazole treatment immediately, three times daily. The affected adrenal gland was surgically removed, and tissue analysis confirmed the diagnosis. The patient’s clinical condition improved significantly over the follow-up period.

“We highlight the need to be aware of this rare presentation of EAS, and we remark the difficulties of EAS diagnosis and treatment,”  researchers wrote.

The team could not rule out the possibility that the patient’s clinical development was due to the natural course of the disease. However, they believe “she had a paradoxical response on the basis of her dramatical worsening just after the SSAs administration, associated to an important rise in ACTH and UFC levels.”

For that reason, researchers think a new version of SSAs, such as Signifor (pasireotide) — which has improved receptor affinity — could provide better therapeutic response.

From https://cushingsdiseasenews.com/2017/11/09/paradoxical-effects-of-somatostatin-analogs-on-adrenal-ectopic-acth-tumor/

ACTH-producing Lung Tumors Hard to Detect, But May Be Cured with Surgery

Ectopic Cushing’s syndrome can be challenging to diagnose, especially when it comes identifying the problem source. But appropriate hormone management protocols, used in combination with advanced imaging methods, may help physicians identify ectopic ACTH-producing tumors.

The findings in a case report of a young man with ectopic Cushing’s syndrome were published in the International Journal of Surgery Case Reports, under the title “Case report: Ectopic Cushing’s syndrome in a young male with hidden lung carcinoid tumor.”

Cushing’s syndrome is caused by high amounts of glucocoticosteroids in the blood. The most common cause is a malfunction of the glands that produce these hormones. In some cases, however, the disease may be caused by tumors elsewhere in the body that have the ability to produce adrenocorticotropic hormone (ACTH).

In half of all Cushing’s patients, ectopic ACTH is produced by small lung cell carcinomas or lung carcinoids (a type of slow-growing lung cancer). But some tumors in the thymus and pancreas also have been found to produce ACTH.

Researchers at Damascus University Hospital in Syria presented the case of a 26-year-old man who had ectopic Cushing’s syndrome due to lung carcinoids.

The patient presented with increased appetite and rapid weight gain for more than a year. These were associated with headache, fatigue, proximal muscle weakness, and easy bruising. He had no family history of hormonal disorder.

Based on the initial physical and symptom evaluation, the clinical team suspected Cushing’s syndrome. Blood analysis revealed high levels of cortisol and ACTH hormones, which supported the diagnosis.

Administration of dexamethasone, a treatment used to inhibit the production of glucocoticosteroids by the pituitary gland, reduced cortisol levels within normal range, but not ACTH levels. This led to the diagnosis of ectopic Cushing’s syndrome.

The next step was to identify the tumor causing the syndrome. The team conducted imaging studies of the brain, chest, and abdomen, but found no tumor.

Because ectopic ACTH is commonly produced by lung cancers, the team then analyzed the patient’s lungs. Again, they failed to detect a tumor.

The patient was discharged with prescription of 200 mg of Nizoral (ketoconazole) once-daily, calcium, and vitamin D. After three months of treatment, he remained stable, with no evidence of symptom improvement.

At this point, the team decided to surgically remove both adrenal glands in an attempt to reduce the hormone levels. Treatment with prednisolone 5 mg and fludrocortisone 0.1 mg once daily was initiated, along with calcium and vitamin D.

Eighteen months later, the patient’s condition worsened and he required hospitalization.

Imaging tests targeting the neck, chest, and abdomen were conducted again. This time, physicians detected a 2 cm mass in the middle lobe of the right lung, which was removed surgically. Detailed analysis of the small tumor confirmed that it was the source of the excessive ACTH.

“ACTH secreting tumors can be very hard to detect,” the researchers stated. “Initial failed localization is common in ectopic ACTH syndrome and it is usually due to carcinoid.”

Cases where the ectopic ACTH production is caused by a carcinoid tumor can be challenging to diagnose because tumors are small and relatively slow-growing. Imaging data is often hard to analyze and the tumors can be confused with pulmonary vessels, the researchers explained.

“In such cases we should first aim to lower blood cortisol medically or through bilateral adrenalectomy to avoid Cushing’s complications,” which should then “be followed up through imaging studies (CT, MRI, scintigraphy or PET) to detect the tumor and resect it, which is the definitive treatment of these patients,” the researchers concluded.

From https://cushingsdiseasenews.com/2017/12/12/case-report-ectopic-acth-producing-lung-tumors-can-hard-detect/

Cushing’s Syndrome: A Tale of Frequent Misdiagnosis


What is it?

Cushing’s syndrome is a condition you probably have never heard of, but for those who have it, the symptoms can be quite scary.  Worse still, getting it diagnosed can take a while.  Cushing’s syndrome occurs when the tissues of the body are exposed to high levels of cortisol for an extended amount of time. Cortisol is the hormone the body produces to help you in times of stress. It is good to have cortisol at normal levels, but when those levels get too high it causes health problems.  Although cortisol is related to stress, there is no evidence that Cushing’s syndrome is directly or indirectly caused by stress.

Cushing’s syndrome is considered rare, but that may be because it is under-reported. As a result, we don’t have good estimates for how many people have it, which is why the estimates for the actual number of cases vary so much–from 5 to 28 million people.[1] The most common age group that Cushing’s affects are those 20 to 50 years old.  It is thought that obesity, type 2 diabetes, and high blood pressure may increase your risk of developing this syndrome.[2]

What causes Cushing’s Syndrome?

Cushing’s syndrome is caused by high cortisol levels. Cushing’s disease is a specific form of Cushing’s syndrome. People with Cushing’s disease have high levels of cortisol because they have a non-cancerous (benign) tumor in the pituitary gland.  The tumor releases adrenocorticotropin hormone (ACTH), which causes the adrenal glands to produce excessive cortisol.

Cushing’s syndrome that is not Cushing’s disease can be also caused by high cortisol levels that result from tumors in other parts of the body.  One of the causes is “ectopic ACTH syndrome.” This means that the hormone-releasing tumor is growing in an abnormal place, such as the lungs or elsewhere.  The tumors can be benign, but most frequently they are cancerous. Other causes of Cushing’s syndrome are benign tumors on the adrenal gland (adrenal adenomas) and less commonly, cancerous adrenal tumors (adrenocortical carcinomas). Both secrete cortisol, causing cortisol levels to get too high.

In some cases, a person can develop Cushing’s syndrome from taking steroid medications, such as prednisone. These drugs, known as corticosteroids, mimic the cortisol produced by the body. People who have Cushing’s syndrome from steroid medications do not develop a tumor.[3]

What are the signs and symptoms of Cushing’s Syndrome?

The appearance of people with Cushing’s syndrome starts to change as cortisol levels build up. Regardless of what kind of tumor they have or where the tumor is located, people tend to put on weight in the upper body and abdomen, with their arms and legs remaining thin; their face grows rounder (“moon face”); they develop fat around the neck; and purple or pink stretch marks appear on the abdomen, thighs, buttocks or arms. Individuals with the syndrome usually experience one or more of the following symptoms: fatigue, muscle weakness, high glucose levels, anxiety, depression, and high blood pressure. Women are more likely than men to develop Cushing’s syndrome, and when they do they may have excess hair growth, irregular or absent periods, and decreased fertility.[4]

Why is Cushing’s Syndrome so frequently misdiagnosed?

These symptoms seem distinctive, yet it is often difficult for those with Cushing’s syndrome to get an accurate diagnosis.  Why?  While Cushing’s is relatively rare, the signs and symptoms are common to many other diseases. For instance, females with excess hair growth, irregular or absent periods, decreased fertility, and high glucose levels could have polycystic ovarian syndrome, a disease that affects many more women than Cushing’s.   Also, people with metabolism problems (metabolic syndrome), who are at higher than average risk for diabetes and heart disease, also tend to have abdominal fat, high glucose levels and high blood pressure.[5]

Problems in testing for Cushing’s

When Cushing’s syndrome is suspected, a test is given to measure cortisol in the urine. This test measures the amount of free or unbound cortisol filtered by the kidneys and then released over a 24 hour period through the urine. Since the amount of urinary free cortisol (UFC) can vary a lot from one test to another—even in people who don’t have Cushing’s—experts recommend that the test be repeated 3 times. A diagnosis of Cushing’s is given when a person’s UFC level is 4 times the upper limit of normal.  One study found this test to be highly accurate, with a sensitivity of 95% (meaning that 95% of people who have the disease will be correctly diagnosed by this test) and a specificity of 98% (meaning that 98% of  people who do not have the disease will have a test score confirming that).[6] However, a more recent study estimated the sensitivity as only between 45%-71%, but with 100% specificity.[7]  This means that the test is very accurate at telling people who don’t have Cushing’s that they don’t have it, but not so good at identifying the people who really do have Cushing’s.  The authors that have analyzed these studies advise that patients use the UFC test together with other tests to confirm the diagnosis, but not as the initial screening test.[8]  

Other common tests that may be used to diagnose Cushing’s syndrome are: 1) the midnight plasma cortisol and late-night salivary cortisol measurements, and 2) the low-dose dexamethasone suppression test (LDDST).  The first test measures the amount of cortisol levels in the blood and saliva at night.  For most people, their cortisol levels drop at night, but people with Cushing’s syndrome have cortisol levels that remain high all night. In the LDDST, dexamethasone is given to stop the production of ACTH.  Since ACTH produces cortisol, people who don’t have Cushing’s syndrome will get lower cortisol levels in the blood and urine. If after giving dexamethasone, the person’s cortisol levels remain high, then they are diagnosed with Cushing’s.[9]

Even when these tests, alone or in combination, are used to diagnose Cushing’s, they don’t explain the cause. They also don’t distinguish between Cushing’s syndrome, and something called pseudo-Cushing state.

Pseudo-Cushing state

Some people have an abnormal amount of cortisol that is caused by something unrelated to Cushing’s syndrome such as polycystic ovarian syndrome, depression, pregnancy, and obesity. This is called pseudo-Cushing state.  Their high levels of cortisol and resulting Cushing-like symptoms can be reversed by treating whatever disease is causing the abnormal cortisol levels. In their study, Dr. Giacomo Tirabassi and colleagues recommend using the desmopressin (DDAVP) test to differentiate between pseudo-Cushing state and Cushing’s.  The DDAVP test is especially helpful in people who, after being given dexamethasone to stop cortisol production, continue to have moderate levels of urinary free cortisol (UFC) and midnight serum cortisol.[10]

An additional test that is often used to determine if one has pseudo-Cushing state or Cushing’s syndrome is the dexamethasone-corticotropin-releasing hormone (CRH) test. Patients are injected with a hormone that causes cortisol to be produced while also being given another hormone to stop cortisol from being produced. This combination of hormones should make the patient have low cortisol levels, and this is what happens in people with pseudo-Cushing state.  People with Cushing’s syndrome, however, will still have high levels of cortisol after being given this combination of hormones.[11]

How can Cushing’s be treated?

Perhaps because Cushing’s is rare or under-diagnosed, few treatments are available. There are several medications that are typically the first line of treatment.  None of the medications can cure  Cushing’s, so they are usually taken until other treatments are given to cure Cushing’s, and only after that if the other treatment fails.

The most common treatment for Cushing’s disease is transsphenoidal surgery, which requires the surgeon to reach the pituitary gland through the nostril or upper lip and remove the tumor.  Radiation may also be used instead of surgery to shrink the tumor.  In patients whose Cushing’s is caused by ectopic ACTH syndrome, all cancerous cells need to be wiped out through surgery, chemotherapy, radiation or a variety of other methods, depending on the location of the tumor. Surgery is also recommended for adrenal tumors.  If Cushing’s syndrome is being caused by corticosteroid (steroid medications) usage, the treatment is to stop or lower your dosage.[12]

Medications to control Cushing’s (before treatment or if treatment fails)

According to a 2014 study in the Journal of Clinical Endocrinology and Metabolism, almost no new treatment options have been introduced in the last decade. Researchers and doctors have focused most of their efforts on improving existing treatments aimed at curing Cushing’s. Unfortunately, medications used to control Cushing’s prior to treatment and when treatment fails are not very effective.

Many of the medications approved by the FDA for Cushing’s syndrome and Cushing’s disease, such as pasireotide, metyrapone, and mitotane, have not been extensively studied.  The research presented to the FDA by the makers of these three drugs did not even make clear what an optimal dose was.[13] In another 2014 study, published in Clinical Epidemiology, researchers examined these three same drugs, along with ten others, and found that only pasireotide had moderate evidence to support its approval.  The other drugs, many of which are not FDA approved for Cushing’s patients, had little or no available evidence to show that they work.[14] They can be sold, however, because the FDA has approved them for other diseases.  Unfortunately, that means that neither the FDA nor anyone else has proven the drugs are safe or effective for Cushing patients.

Pasireotide, the one medication with moderate evidence supporting its approval, caused hyperglycemia (high blood sugar) in 75% of patients who participated in the main study for the medication’s approval for Cushing’s.  As a result of developing hyperglycemia, almost half (46%) of the participants had to go on blood-sugar lowering medications. The drug was approved by the FDA for Cushing’s anyway because of the lack of other effective treatments.

Other treatments used for Cushing’s have other risks.  Ketoconazole, believed to be the most commonly prescribed medications for Cushing’s syndrome, has a black box warning due to its effect on the liver that can lead to a liver transplant or death.  Other side effects include: headache, nausea, irregular periods, impotence, and decreased libido. Metyrapone can cause acne, hirsutism, and hypertension. Mitotane can cause neurological and gastrointestinal symptoms such as dizziness, nausea, and diarrhea and can cause an abortion in pregnant women.[15]

So, what should you do if you suspect you have Cushing’s Syndrome?

Cushing’s syndrome is a serious disease that needs to be treated, but there are treatment options available for you if you are diagnosed with the disease. If the symptoms in this article sound familiar, it’s time for you to go see your doctor. Make an appointment with your general practitioner, and explain your symptoms to him or her.  You will most likely be referred to an endocrinologist, who will be able to better understand your symptoms and recommend an appropriate course of action.

 

All articles are reviewed and approved by Dr. Diana Zuckerman and other senior staff.

  1. Nieman, Lynette K. Epidemiology and clinical manifestations of Cushing’s syndrome, 2014. UpToDate: Wolters Kluwer Health
  2. Cushing’s syndrome/ disease, 2013. American Association of Neurological Surgeons. http://www.aans.org/Patient%20Information/Conditions%20and%20Treatments/Cushings%20Disease.aspx
  3. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  4. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  5. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  6. Newell-Price, John, Peter Trainer, Michael Besser and Ashley Grossman. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states, 1998. Endocrine Reviews: Endocrine Society
  7. Carroll, TB and JW Findling. The diagnosis of Cushing’s syndrome, 2010. Reviews in Endocrinology and Metabolic Disorders: Springer
  8. Ifedayo, AO and AF Olufemi. Urinary free cortisol in the diagnosis of Cushing’s syndrome: How useful?, 2013. Nigerian Journal of Clinical Practice: Medknow.
  9. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  10. Tirabassi, Giacomo, Emanuela Faloia, Roberta Papa, Giorgio Furlani, Marco Boscaro, and Giorgio Arnaldi. Use of the Desmopressin test in the differential diagnosis of pseudo-Cushing state from Cushing’s disease, 2013. The Journal of Clinical Endocrinology & Metabolism: Endocrine Society.
  11. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  12. Cushing’s syndrome, 2012. National Endocrine and Metabolic Diseases: National Institutes of Health. http://endocrine.niddk.nih.gov/pubs/cushings/cushings.aspx#treatment
  13. Tirabassi, Giacomo, Emanuela Faloia, Roberta Papa, Giorgio Furlani, Marco Boscaro, and Giorgio Arnaldi. Use of the Desmopressin test in the differential diagnosis of pseudo-Cushing state from Cushing’s disease, 2013. The Journal of Clinical Endocrinology & Metabolism: Endocrine Society.
  14. Galdelha, Monica R. and Leonardo Vieira Neto. Efficacy of medical treatment in Cushing’s disease: a systematic review, 2014. Clinical Endocrinology: John Wiley & Sons.
  15. Adler, Gail. Cushing syndrome treatment & management, 2014. MedScape: WebMD.

Adapted from https://www.center4research.org/cushings-syndrome-frequent-misdiagnosis/

Cushing’s Disease Treatment Market to Witness an Outstanding Growth by 2017 – 2025

Cushing disease is caused by tumour in the pituitary gland which leads to excessive secretion of a hormone called adrenocorticotrophic (ACTH), which in turn leads to increasing levels of cortisol in the body. Cortisol is a steroid hormone released by the adrenal glands and helps the body to deal with injury or infection. Increasing levels of cortisol increases the blood sugar and can even cause diabetes mellitus. However the disease is also caused due to excess production of hypothalamus corticotropin releasing hormone (CRH) which stimulates the synthesis of cortisol by the adrenal glands.

The condition is named after Harvey Cushing, the doctor who first identified the disease in 1912. Cushing disease results in Cushing syndrome. Cushing syndrome is a group of signs and symptoms developed due to prolonged exposure to cortisol.

Signs and symptoms of Cushing syndrome includes hypertension, abdominal obesity, muscle weakness, headache, fragile skin, acne, thin arms and legs, red stretch marks on stomach, fluid retention or swelling, excess body and facial hair, weight gain, acne, buffalo hump, tiredness, fatigue, brittle bones, low back pain, moon shaped face etc.

Symptoms vary from individual to individual depending upon the disease duration, age and gender of the patient.  Disease diagnosis is done by measuring levels of cortisol in patient’s urine, saliva or blood. For confirming the diagnosis, a blood test for ACTH is performed. The first-line treatment of the disease is through surgical resection of ACTH-secreting pituitary adenoma, however disease management is also done through medications, Cushing disease treatment market comprises of the drugs designed for lowering the level of cortisol in the body. Thus patients suffering from Cushing disease are prescribed medications such as ketoconazole, mitotane, aminoglutethimide metyrapone, mifepristone, etomidate and pasireotide.

Request to View Tables of Content @ http://www.persistencemarketresearch.com/toc/14155

Cushing’s disease treatment market revenue is growing with a stable growth rate, this is attributed to increasing number of pipeline drugs. Also increasing interest of pharmaceutical companies to develop Cushing disease drugs is a major factor contributing to the revenue growth of Cushing disease treatment market over the forecast period. Current and emerging players’ focuses on physician education and awareness regarding availability of different drugs for curing Cushing disease, thus increasing the referral speeds, time to diagnosis and volume of diagnosed Cushing disease individuals. Growing healthcare expenditure and increasing awareness regarding Cushing syndrome aids in the revenue growth of Cushing’s disease treatment market. Increasing number of new product launches also drives the market for Cushing’s disease Treatment devices. However availability of alternative therapies for curing Cushing syndrome is expected to hamper the growth of the Cushing’s disease treatment market over the forecast period.

The Cushing’s disease Treatment market is segment based on the product type, technology type and end user

Cushing’s disease Treatment market is segmented into following types:

By Drug Type

  • Ketoconazole
  • Mitotane
  • Aminoglutethimide
  • Metyrapone
  • Mifepristone
  • Etomidate
  • Pasireotide

By End User

  • Hospital Pharmacies
  • Retail Pharmacies
  • Drug Stores
  • Clinics
  • e-Commerce/Online Pharmacies

Cushing’s disease treatment market revenue is expected to grow at a good growth rate, over the forecast period. The market is anticipated to perform well in the near future due to increasing awareness regarding the condition. Also the market is anticipated to grow with a fastest CAGR over the forecast period, attributed to increasing investment in R&D and increasing number of new product launches which is estimated to drive the revenue growth of Cushing’s disease treatment market over the forecast period.

Depending on geographic region, the Cushing’s disease treatment market is segmented into five key regions: North America, Latin America, Europe, Asia Pacific (APAC) and Middle East & Africa (MEA).

North America is occupying the largest regional market share in the global Cushing’s disease treatment market owing to the presence of more number of market players, high awareness levels regarding Cushing syndrome. Healthcare expenditure and relatively larger number of R&D exercises pertaining to drug manufacturing and marketing activities in the region. Also Europe is expected to perform well in the near future due to increasing prevalence of the condition in the region.

Asia Pacific is expected to grow at the fastest CAGR because of increase in the number of people showing the symptoms of Cushing syndrome, thus boosting the market growth of Cushing’s disease treatment market throughout the forecast period.

Some players of Cushing’s disease Treatment market includes CORCEPT THERAPEUTICS, HRA Pharma, Strongbridge Biopharma plc, Novartis AG, etc. However there are numerous companies producing branded generics for Cushing disease. The companies in Cushing’s disease treatment market are increasingly engaged in strategic partnerships, collaborations and promotional activities to capture a greater pie of market share.

Buy Now: You can now buy a single user license of the report at http://www.persistencemarketresearch.com/checkout/14155

The final report customized as per your specific requirement will be sent to your e-mail id within 7-20 days, depending on the scope of the report.

The research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, and statistically supported and industry-validated market data. It also contains projections using a suitable set of assumptions and methodologies. The research report provides analysis and information according to categories such as market segments, geographies, types, technology and applications.

For more information, please e-mail us at sales@persistencemarketresearch.com

About Us 

Persistence Market Research (PMR) is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research, and consulting services. PMR boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws from its multi-disciplinary capabilities and high-pedigree team of analysts to share data that precisely corresponds to clients’ business needs.

PMR stands committed to bringing more accuracy and speed to clients’ business decisions. From ready-to-purchase market research reports to customized research solutions, PMR’s engagement models are highly flexible without compromising on its deep-seated research values.

Contact

Persistence Market Research Pvt. Ltd

305 Broadway

7th Floor, New York City,

NY 10007, United States,

USA – Canada Toll Free: 800-961-0353

Email: sales@persistencemarketresearch.com

 media@persistencemarketresearch.com

 Web: http://www.persistencemarketresearch.com

%d bloggers like this: