Menopause, Obesity, and Diabetes Top ENDO 2015 Agenda

ENDO_2015

 

Menopause, obesity, and diabetes will top the clinical agenda at the Endocrine Society’s annual meeting, ENDO 2015, with a focus on personalized and precision approaches to disease management.

Endocrine-disrupting chemicals will also take the stage at the meeting, which runs from Thursday, March 5, through Sunday, March 8, in San Diego, California. New research to be presented includes an examination of the economic costs of exposure to these chemicals and their potential teratogenic effects.

Other topics on the agenda are the effects of male obesity on a couple’s fertility, a nasal spray that could cut calorie consumption, and a renewed look at the long-term safety of menopausal hormone therapy.

“The Endocrine Society is really known for cutting-edge research,” society president Richard J Santen, MD, from the University of Virginia School of Medicine, Charlottesville, told Medscape Medical News.

“For many of us in the field, it’s the premier meeting for both science and clinical reviews and new science presentations and networking,” added steering committee chair Matthew Ringel, MD, from Wexner Medical Center, Ohio State University, Columbus. “We’re excited about trying to increase the clinical-science part of the meeting and what would be relevant to clinical, basic, and translational-research attendees.”

As always, the meeting will feature bench science, bedside medicine, and the translation from one to the other, including plenary talks on both precision and personalized approaches to menopause, new genetic discoveries in obesity that could point to novel treatment targets, the link between antihyperglycemic therapy and cardiovascular disease, and fresh insights into the mechanisms of polycystic ovary syndrome.

The meeting begins the morning of Thursday, March 5, with two presidential plenary talks: “Genomics, Pharmacogenomics, and Functional Genomics in Menopausal Women: Implications for Precision Medicine,” by oncologist James N Ingle, MD, from the Mayo Clinic, Rochester, Minnesota, and “Personalized Menopause Management: Clinical and Biomarker Data That Inform Decision Making,” by JoAnn E Manson, MD, of Brigham and Women’s Hospital, Boston, Massachusetts.

“This issue of precision medicine has been such a hot topic, but people don’t really understand it. So the fact that we’re going to feature it in the very first talk is of interest,” Dr Santen said.

While this talk will offer a glimpse of the future, individualized approaches to menopause treatment are already here and will be featured in the session immediately following the plenary, when “Treatment of Symptoms of Menopause: An Endocrine Society Clinical-Practice Guideline” will be presented.

Wide Range of Endocrine Topics Will Be Addressed

Two other clinical-practice guidelines, on management of primary adrenal insufficiency and treatment of Cushing’s syndrome, will also be revealed during the meeting, on Saturday and Sunday, respectively.

And in a special scientific session on Friday, Janet Woodcock, MD, director of the US Food and Drug Administration’s Center for Drug Evaluation and Research, will speak on “Safety and Efficacy of Diabetes Drugs: Steering Between Scylla and Charybdis.”

Meanwhile, clinically focused “Meet the Professor” sessions will address obesity and diabetes, along with a wide range of other endocrine topics, including flushing and sweating disorders, vitamin D, thyroid, gynecomastia, endocrine tumors, testosterone therapy, and genetic counseling for endocrine patients. .

The meeting’s move — from June in previous years to March — means that it is no longer back-to-back with the annual scientific sessions of the American Diabetes Association (ADA).

“We’ve moved the meeting to March, which allows us some separation from the ADA to give us an opportunity to pull in some top diabetes topics and speakers. We’ve always done that over the years, but it allows a little more focus on that area,” Dr Ringel noted.

And, he hopes, more clinicians will be able to attend both meetings going forward. “Years ago, people tried to go to both, one after the other….It’s especially hard for clinicians to be away for that length of time,” he said.

There’s another new feature for ENDO 2015 that is likely to prove popular: “Endocrine Science Social” events will take place at 6:00 pm following the afternoon symposia each day, so attendees can discuss the topics over drinks.

“The philosophy is there’s synergy between scientists and clinicians,” Dr Santen explained.

“With more than 8000 attendees expected, the meeting overall is too big for networking, so we’re going to have a social gathering after the sessions each afternoon.”

What Causes Overweight and Obesity?

Health Conditions

Some hormone problems may cause overweight and obesity, such as underactive thyroid (hypothyroidism), Cushing’s syndrome, and polycystic ovarian syndrome (PCOS).

Underactive thyroid is a condition in which the thyroid gland doesn’t make enough thyroid hormone. Lack of thyroid hormone will slow down your metabolism and cause weight gain. You’ll also feel tired and weak.

Cushing’s syndrome is a condition in which the body’s adrenal glands make too much of the hormone cortisol. Cushing’s syndrome also can develop if a person takes high doses of certain medicines, such as prednisone, for long periods.

People who have Cushing’s syndrome gain weight, have upper-body obesity, a rounded face, fat around the neck, and thin arms and legs.

PCOS is a condition that affects about 5–10 percent of women of childbearing age. Women who have PCOS often are obese, have excess hair growth, and have reproductive problems and other health issues. These problems are caused by high levels of hormones called androgens.

Read the entire article at http://www.nhlbi.nih.gov/health/health-topics/topics/obe/causes

Mutation of ARMC5 gene characterized as the cause of meningeal tumour growth

Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have published their findings that mutations in a gene known as “ARMC5” promote the growth of benign tumours in the adrenal glands and on the meninges: ARMC5 appears to belong to the group of so-called tumour suppressor genes. It is the first time in years that scientists have characterized such a gene.

The ARMC5 gene was discovered by independent workgroups studying – so-called adrenal adenomas – in connection with Cushing’s syndrome. In this disease, the body produces too much of the . Now, for the first time, a mutation of ARMC5 has been characterized as the cause behind the growth of meningeal tumours. The results on this tumour syndrome, obtained by the group of Dr. Patrick May and PD. Dr. Jochen Schneider together with colleagues from Charité Berlin (Dr. Ulf Elbelt) and the Universities of Würzburg (Prof. Dr. Bruno Allolio) and Cologne (Dr. Michael Kloth), have been published recently in the Journal of Clinical Endocrinology Metabolism.

Cortisol is an important hormone. It influences many metabolic pathways in the body and has a suppressing effect on the immune system. Accordingly, it is commonly employed as an anti-inflammatory medication. Prolonged, elevated levels of cortisol in the body can lead to obesity, muscular dystrophy, depression and other symptoms. To maintain the correct concentration in the blood, the body has a refined regulation system: Certain areas of the brain produce the hormone corticotropin as a stimulator of cortisol release; the actual formation of cortisol takes place in the . As the concentration of cortisol in the blood rises, the brain reduces the production of corticotropin.

In search of the causes of Cushing’s syndrome, scientists recently encountered certain genetic causes of benign tumours of the adrenal cortex. Growth of these adrenal cortex adenomas is based on a combination of hereditary and spontaneous mutations: It affects people in whom one of two “alternative copies” – one of the so-called alleles – of the ARMC5 gene is mutated from birth. If the second allele of ARMC5 later also undergoes a spontaneous mutation in the adrenal cortex, then the gene no longer functions. “What is interesting is that the failure of ARMC5 has no direct influence on cortisol production. However, because the tumour cells multiply faster than other body cells, and the number of cells in the tumour increases, the blood cortisol level rises in the course of the disease”, says Dr Schneider. Then, the level in the body rises and ultimately results in the onset of Cushing’s syndrome.

When other scientific workgroups discovered that further benign tumours – in this case meningeal tumours – occur more often in ARMC5-Cushing families, the group of Patrick May and Jochen Schneider sequenced the ARMC5 gene and studied it using bioinformatic techniques. “We demonstrated for the first time, in a patient with an adrenal cortex tumour and simultaneously a meningeal tumour, that somatic, that is non-hereditary, ARMC5 mutations are present in both tumours. This observation suggests that ARMC5 is a true tumour-suppressor gene.”

It must now be explored, Schneider continues, to what extent patients with adrenal cortex tumours ought to be screened for simultaneous presence of meningioma, and in which other types of tumour ARMC5 mutations are responsible for tumour growth: “Building upon that, we can learn whether the gene and the metabolic pathways it influences offer new approaches for treating the tumour syndrome.”

More information: “Molecular and Clinical Evidence for an ARMC5 Tumor Syndrome: Concurrent Inactivating Germline and Somatic Mutations are Associated with both Primary Macronodular Adrenal Hyperplasia and Meningioma.” Journal of Clinical Endocrinology Metabolism, October 2014. DOI: 10.1210/jc.2014-2648

Journal reference: Journal of Clinical Endocrinology & Metabolism search and more info website

Provided by University of Luxembourg search and more info

From http://medicalxpress.com/news/2014-10-mutation-armc5-gene-characterized-meningeal.html

Subclinical Cushing’s syndrome and cardiovascular disease

Guido Di Dalmazi and colleagues1 reported that in patients with adrenal incidentalomas and either stable mild hypercortisolism or worsening of cortisol hypersecretion, all-cause and cardiovascular disease-specific mortality was higher compared with in those with adrenal incidentalomas that did not secrete cortisol, after a mean follow-up of 7·5 years. Moreover, cortisol concentrations measured after dexamethasone-suppression test were associated with all-cause mortality independent of the presence of traditional cardiovascular disease risk factors.
Subclinical Cushing’s syndrome is the most common hormonal abnormality in patients with adrenal incidentalomas (prevalence 1—29%).2 The proportion of adrenal incidentalomas that progress to subclinical Cushing’s syndrome is low (1·7%) and most are lesions of 3 cm or larger.2 Progression to overt Cushing’s syndrome is controversial (because both spontaneous normalisation of hypersecretion and stable disease have been reported during follow-up) and spontaneous normalisation of hypersecretion has been reported in 50% of cases.2 Results of the study by Di Dalmazi and co-workers1 are important because they show, for the first time, that patients with subclinical Cushing’s syndrome are at increased risk of cardiovascular disease and all-cause mortality (mainly attributable to cardiovascular disease). The association of cortisol with all-cause mortality might also be attributable to its potential role in the pathogenesis of metabolic syndrome.3
Findings of previous studies have shown an increased prevalence of cardiovascular disease risk factors in patients with subclinical Cushing’s syndrome, but data for optimum management are conflicting. Some criteria—such as large (>4—6 cm) adrenal incidentalomas, features suggestive of malignancy (eg, heterogeneity, irregular shape, calcification or necrosis, invasion to adjacent tissues), or potentially lethal hormonal hypersecretion (ie, pheochromocytomas)—support the need for adrenalectomy. However, universal surgical management of patients with subclinical Cushing’s syndrome has not been accepted.24 Uncertainty about the most effective management strategy for subclinical Cushing’s syndrome is attributable to the variable definitions used, and the small sample size and retrospective nature of most studies.4 Only one prospective study has been published so far showing that laparoscopic adrenalectomy is more beneficial than is conservative management for the normalisation or improvement of cardiovascular disease risk factors, such as diabetes, dyslipidaemia, hypertension, and obesity.5
Prospective studies and registries are needed to document the effect of different approaches on the incidence of cardiovascular disease events and mortality in patients with adrenal incidentalomas and subclinical Cushing’s syndrome. Until then, individualised treatment seems prudent. Surgical management of subclinical Cushing’s syndrome can be suggested in young patients (age <50 years) and in those with cardiovascular disease risk factors or bone disease associated with hypercortisolism that are of recent onset, difficult to control with drugs, or show progression over time.4
Another message from Di Dalmazi’s study1 is that hormonal deterioration might develop even after 4—5 years, which most studies reported as a reasonable and safe follow-up.2 This possibility should be kept in mind for the management of patients with adrenal incidentalomas, especially if clinical signs of Cushing’s syndrome develop or if cardiovascular disease risk factors become evident or increase in severity (ie, hormonal hypersecretion).
We declare that we have no competing interests.

References

1 Di Dalmazi GVicennati VGarelli S, et alCardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing’s syndrome: a 15-year retrospective studyLancet Diabetes Endocrinol 2014published online Jan 29 http://dx.doi.org/10.1016/S2213-8587(13)70211-0.
2 Anagnostis PKaragiannis ATziomalos KKakafika AIAthyros VGMikhailidis DPAdrenal incidentaloma: a diagnostic challengeHormones (Athens) 20098163-184PubMed
3 Anagnostis PAthyros VGTziomalos KKaragiannis AMikhailidis DPClinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesisJ Clin Endocrinol Metab 200994:2692-2701PubMed
4 Terzolo MPia AReimondo GSubclinical Cushing’s syndrome: definition and managementClin Endocrinol (Oxf) 20127612-18PubMed
5 Toniato AMerante-Boschin IOpocher GPelizzo MRSchiavi FBallotta ESurgical versus conservative management for subclinical Cushing syndrome in adrenal incidentalomas: a prospective randomized studyAnn Surg 2009249388-391PubMed
a Division of Endocrinology, Police Medical Centre, Thessaloniki, 54 640, Greece
b Department of Endocrinology and Metabolism, Agios Pavlos General Hospital, Thessaloniki, Greece
c Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
d Department of Clinical Biochemistry (Vascular Prevention Clinic) Royal Free Hospital Campus, University College London Medical School, University College London, London, UK

What would Harvey Cushing say about Cushing’s disease today?

harvey-book

(BPT) – More than 80 years ago renowned neurosurgeon, Dr. Harvey Cushing, discovered a tumor on the pituitary gland as the cause of a serious, hormone disorder that leads to dramatic physical changes in the body in addition to life-threatening health concerns. The discovery was so profound it came to be known as Cushing’s disease. While much has been learned about Cushing’s disease since the 1930s, awareness of this rare pituitary condition is still low and people often struggle for years before finding the right diagnosis.

Read on to meet the man behind the discovery and get his perspective on the present state of Cushing’s disease.

* What would Harvey Cushing say about the time it takes for people with Cushing’s disease to receive an accurate diagnosis?

Cushing’s disease still takes too long to diagnose!

Despite advances in modern technology, the time to diagnosis for a person with Cushing’s disease is on average six years. This is partly due to the fact that symptoms, which may include facial rounding, thin skin and easy bruising, excess body and facial hair and central obesity, can be easily mistaken for other conditions. Further awareness of the disease is needed as early diagnosis has the potential to lead to a more favorable outcome for people with the condition.

* What would Harvey Cushing say about the advances made in how the disease is diagnosed?

Significant progress has been made as several options are now available for physicians to use in diagnosing Cushing’s disease.

In addition to routine blood work and urine testing, health care professionals are now also able to test for biochemical markers – molecules that are found in certain parts of the body including blood and urine and can help to identify the presence of a disease or condition.

* What would Harvey Cushing say about disease management for those with Cushing’s disease today?

Patients now have choices but more research is still needed.

There are a variety of disease management options for those living with Cushing’s disease today. The first line and most common management approach for Cushing’s disease is the surgical removal of the tumor. However, there are other management options, such as medication and radiation that may be considered for patients when surgery is not appropriate or effective.

* What would Harvey Cushing say about the importance of ongoing monitoring in patients with Cushing’s disease?

Routine check-ups and ongoing monitoring are key to successfully managing Cushing’s disease.

The same tests used in diagnosing Cushing’s disease, along with imaging tests and clinical suspicion, are used to assess patients’ hormone levels and monitor for signs and symptoms of a relapse. Unfortunately, more than a third of patients experience a relapse in the condition so even patients who have been surgically treated require careful long-term follow up.

* What would Harvey Cushing say about Cushing’s disease patient care?

Cushing’s disease is complex and the best approach for patients is a multidisciplinary team of health care professionals working together guiding patient care.

Whereas years ago patients may have only worked with a neurosurgeon, today patients are typically treated by a variety of health care professionals including endocrinologists, neurologists, radiologists, mental health professionals and nurses. We are much more aware of the psychosocial impact of Cushing’s disease and patients now have access to mental health professionals, literature, patient advocacy groups and support groups to help them manage the emotional aspects of the disease.

Learn More

Novartis is committed to helping transform the care of rare pituitary conditions and bringing meaningful solutions to people living with Cushing’s disease. Recognizing the need for increased awareness, Novartis developed the “What Would Harvey Cushing Say?” educational initiative that provides hypothetical responses from Dr. Cushing about various aspects of Cushing’s disease management based on the Endocrine Society’s Clinical Guidelines.

For more information about Cushing’s disease, visit www.CushingsDisease.com or watch educational Cushing’s disease videos on the Novartis YouTube channel at www.youtube.com/Novartis.

 

From http://www.jsonline.com/sponsoredarticles/health-wellness/what-would-harvey-cushing-say-about-cushings-disease-today8087390508-253383751.html