Measuring TSH Levels Could Improve Diagnosis for Cushing’s Syndrome

Measuring the variation in thyroid stimulating hormone blood levels between midnight and morning may be better for diagnosing Cushing’s syndrome than current approaches, a study suggests. 

The study, “TSH ratio as a novel diagnostic method for Cushing’s syndrome,” was published in the Endocrine Journal. 

Cushing’s syndrome (CS) is a condition characterized by excess cortisol in the blood, which can lead to a variety of issues, including obesity, high blood pressure, abnormal lipid levels, osteoporosis, depression, and cognitive impairments.

In some cases, patients have high cortisol levels, but lack the typical physical features of Cushing’s syndrome. These patients are considered to have subclinical Cushing’s syndrome (SCS), and are at higher risk for cardiovascular disease.

Being able to properly diagnose CS and SCS is of utmost importance for proper intervention and treatment of these patients.

Current methods of diagnosis rely on dexamethasone suppressing tests or late-night salivary and blood cortisol tests, as well as measurements of cortisol in urine. However, because cortisol is a stress-hormone, it can be elevated in cases of mental or physical stress, leading to false positive results on these tests. 

Researchers in this study examined if another hormone, called the thyroid stimulating hormone (TSH), could be used to diagnose Cushing’s syndrome with better accuracy.

TSH is a hormone that stimulates the thyroid gland and whose secretion is affected by the body’s circadian rhythm. Its highest levels in the blood are usually seen in the late evening or early morning. However, patients with CS or SCS lack this nocturnal increase in TSH levels, which could be useful as a new diagnostic approach.

The study recruited 142 patients with suspected CS and SCS, and 21 patients with depression, being treated at the Osaka University Hospital in Japan.

Patients received the ordinal screening tests for Cushing’s syndrome, along with measurements of their midnight-to-morning TSH levels.

After taking the tests, only 20 patients were diagnosed as having Cushing’s, including 12 with over (normal) Cushing’s syndrome and 10 with subclinical Cushing’s syndrome.

Patients with Cushing’s had significantly lower midnight TSH levels than non-Cushing’s patients. No differences were seen in morning levels between the groups. Of note, TSH ratio was maintained in patients with depression, suggesting TSH levels could be used to diagnose Cushing’s in patients with depression.

Researchers observed that serum TSH ratio had powerful diagnostic accuracy. Among patients identified as having Cushing’s, 90% actually had the disease. And among patients excluded for Cushing’s, 95% did not have the condition. These sensitivity and specificity rates were better than with current diagnostic approaches.

However, when considering this test, patients with a severe TSH deficiency must be taken into account.

Overall, these results suggest that the midnight-to-morning serum TSH ratio is a potential new way to diagnose both CS and SCS with a higher specificity than the current diagnostic methods

“The strength of our current survey is its prospective design and the evaluation of not only overt CS but also SCS. The limitation is the relatively small number of CS group patients, especially overt CD,” the researchers wrote.

“New prospective studies will be needed with a larger number of patients in order to further clarify the optimal TSH ratio in the diagnosis of CS,” the study concluded. 

From https://cushingsdiseasenews.com/2018/06/28/measuring-tsh-levels-may-improve-cushings-syndrome-diagnosis-study/

Does a Normal Urine Free Cortisol Result Rule out Cushing’s Syndrome?

Endocrine Society’s 97th Annual Meeting and Expo, March 5–8, 2015 – San Diego
SAT-384:
Does a Normal Urine Free Cortisol Result Rule out Cushing’s Syndrome?
1 and 2

  • 1Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
  • 2National Institutes of Health, Bethesda, MD
Presentation Number: SAT-384
Date of Presentation: March 7, 2015
Abstract:Background: Urine free cortisol (UFC) has been traditionally used as one of the first steps in the diagnostic evaluation of Cushing’s syndrome (CS) (1). False positive results, especially values less than twice the upper limit of normal (ULN), can be seen in uncontrolled diabetes, obesity, depression, alcoholism, increased fluid intake, overcollection and stress. False negative results have also been reported with incomplete collection, in mild or cyclic CS and in patients with renal insufficiency (2-3). We evaluated the diagnostic accuracy of UFC and 24-hour urine 17-hydroxycorticosteroids (17OHCS) in patients with CS.Methods: Retrospective study of all CS patients evaluated at the National Institutes of Health (NIH) from 2009 to 2014. Screening tests used for CS included UFC, 17OHCS, late night salivary cortisol (LNSC), midnight serum cortisol and low dose (1mg overnight or 2-day 2mg/day) dexamethasone suppression test (DST). Values above reference range for UFC, 17OHCS and LNSC, a midnight serum cortisol ≥ 7.5 mcg/dL, and post-dexamethasone cortisol values ≥ 1.8 mcg/dL were considered abnormal. Hourly 24-hour sampling for cortisol was performed in a few cases with a mild clinical phenotype and equivocal test results. UFC was measured using liquid chromatography/tandem mass spectrometry (LC-MS/MS). 17OHCS was measured using colorimetric methodology with Porter-Silber reaction (reported as mg/g of creatinine). Mean of the first two UFC and 17OHCS values (appropriate collection by urine volume and creatinine) obtained within 30 days of initial NIH presentation were used for the purpose of this study.

Results: Seventy-two patients were diagnosed with CS (aged 18-77 years, 51 females). Of these, 51 had Cushing’s disease (CD), 10 had ectopic CS while 2 had an adrenal source of Cushing’s based on pathology. Biochemical tests including inferior petrosal sinus sampling (IPSS) suggested ectopic CS but no tumor was found (occult) in 6 patients. IPSS was indicative of a pituitary source in 2 patients with failed transsphenoidal surgery while one patient did not complete evaluation for ACTH-dependent CS. UFC results were available in all, 17OHCS in 70, LNSC in 21, midnight serum cortisol in 68 and DST results in 37 patients. UFC was falsely normal in six and only minimally elevated (< 2 x ULN) in 13 patients (normal renal function, no history of cyclicity, all had CD). Of these 19 patients, 24h 17OHCS was abnormal in all, LNSC was abnormal in 12, midnight serum cortisol was abnormal in 18 and DST was abnormal in 12 patients. Hourly 24-hour sampling for cortisol performed in 3 of these patients revealed abnormal nadir (> 7.5 mcg/dL) and mean daily serum cortisol (> 9 mcg/dL) levels.

Conclusion: UFC can be falsely normal or only minimally elevated in mild CS. Multiple collections and use of complimentary screening tests including 24-hour urine 17OHCS and LNSC can help make a diagnosis and prevent delay in treatment.

(1) Newell-Price J, et al. Cushing’s syndrome. Lancet. 2006;367(9522):1605-17.  (2) Alexandraki KI, et al. Is urinary free cortisol of value in the diagnosis of Cushing’s syndrome. Curr Opin Endocrinol Diabetes Obes. 2011;18:259–63.  (3) Kidambi S, et al. Limitations of nocturnal salivary cortisol and urine free cortisol in the diagnosis of mild Cushing’s syndrome. Eur J Endocrinol. 2007;157(6):725-31

Nothing to Disclose: STS, LKN

Sources of Research Support: This research was in part supported by the intramural research program of NICHD/NIH

Read the entire article at http://press.endocrine.org/doi/abs/10.1210/endo-meetings.2015.ahpaa.9.sat-384

%d bloggers like this: