Unilateral Adrenalectomy for Pediatric Cyclical Cushing Syndrome With Novel PRKAR1A Variant Associated Carney Complex

Abstract

Primary pigmented nodular adrenocortical disease is a rare cause of Cushing syndrome accounting for less than 1% of cases. We present a 9-year-old boy who presented at age 4 with cyclical Cushing syndrome and was eventually diagnosed with a novel, previously unreported, unpublished variant in PRKAR1A associated with Carney complex. He was treated with unilateral left adrenalectomy. At 1-year follow-up, he continues to be in remission of his symptoms of Cushing syndrome.

Introduction

Cushing syndrome is characterized by prolonged exposure to excess glucocorticoids and is broadly classified as either ACTH-dependent or ACTH-independent [12]. Primary pigmented nodular adrenocortical disease (PPNAD) is a rare cause of ACTH-independent Cushing syndrome, characterized by bilateral adrenal hyperplasia with autonomous, hyperfunctioning nodules [12]. Approximately 90% of PPNAD cases occur in the context of Carney complex, with isolated cases being exceedingly uncommon [12].

PPNAD was first described in 1984 by Carney et al, who coined the term in a case series of 4 patients and a review of 24 previously reported cases [1]. In that series, patients presented with ACTH-independent Cushing syndrome and no radiographic evidence of adrenal tumors. All underwent bilateral adrenalectomy, with histopathology revealing bilateral pigmented nodules in otherwise small or normal-sized adrenal glands [1]. Histologically, the classic features of PPNAD include multiple small black or brown cortical nodules surrounded by an atrophic adrenal cortex—reflecting chronic ACTH suppression [1].

Clinically, PPNAD most often presents with cyclical Cushing syndrome, characterized by alternating periods of hypercortisolism and normocortisolemia [2]. This intermittent pattern poses a substantial diagnostic challenge, as biochemical confirmation requires detection of cortisol excess during active phases of the cycle.

Carney complex is a multiple neoplasia syndrome involving endocrine, cardiac, cutaneous, and neural tumors. First described by Carney et al in 1985, it is typically inherited in an autosomal dominant fashion. Approximately 70% of cases occur in familial settings, while the remaining 30% arise from de novo pathogenic variants [34]. Over half of affected individuals harbor pathogenic variants in the PRKAR1A tumor suppressor gene on chromosome 17q24.2, while approximately 20% of cases are linked to alternate loci such as 2p16 [24].

Diagnostic criteria for Carney complex include either 2 clinical manifestations or 1 clinical manifestation in combination with a pathogenic PRKAR1A variant or an affected first-degree relative [2]. The most common endocrine manifestation is PPNAD, reported in approximately 25% of patients with Carney complex, though this likely underestimates the true prevalence, as autopsy studies reveal histologic evidence of PPNAD in nearly all affected individuals [2].

The Endocrine Society clinical practice guidelines recommend bilateral adrenalectomy as the definitive treatment for PPNAD, effectively curing hypercortisolism but necessitating lifelong glucocorticoid and mineralocorticoid replacement therapy due to resultant adrenal insufficiency [5]. Unilateral adrenalectomy has emerged as an alternative approach, particularly in pediatric patients, with the potential to preserve endogenous adrenal function.

Herein, we present the case of a 9-year-old boy with Carney complex and cyclical Cushing syndrome due to PPNAD, successfully managed with unilateral adrenalectomy.

Case Presentation

A 4-year-old boy presented with a week-long history of facial swelling, hyperphagia, weight gain, and scrotal swelling. At presentation, his weight was 22 kg (99th percentile) and body mass index (BMI) was 18 kg/m² (96th percentile). Initial workup revealed normal 24-hour urinary free cortisol <0.0913 µg/day (SI: 274 nmol/day) with low urinary creatinine 215 mg/day (SI: 1.9 mmol/day) (normal reference range 973-2195 mg/day; SI: 8.6-19.4 mmol/day) suggesting an incomplete sample. A repeat collection produced similar results. A 1 mg dexamethasone suppression test demonstrated nonsuppressed cortisol (27.9 µg/dL; SI: 772 nmol/L), suggestive of Cushing syndrome.

Over 5 years, the patient experienced 2 to 3 episodes per year of rapid weight gain (20-50 lbs), facial flushing, abdominal distention, and mood changes. Despite persistent obesity (>97th percentile), linear growth remained normal.

Diagnostic Assessment

At age 7, midnight salivary cortisol was markedly elevated at 3.7 µg/dL (SI: 103 nmol/L) (normal reference range < 0.4 µg/dL; SI: < 11.3 nmol/L), raising suspicion for cyclical Cushing syndrome. Magnetic resonance imaging of the abdomen was negative for adrenal lesions. At age 8, during an active episode, 2 elevated salivary cortisol samples, 2.0 µg/dL (SI: 55.1 nmol/L) and 2.2 µg/dL (SI: 61.9 nmol/L) (normal reference range < 0.4 µg/dL; SI: < 11.3 nmol/L), were obtained. A high-dose dexamethasone suppression test yielded a low baseline cortisol 3.2 µg/dL (SI: 89 nmol/L) and nonsuppressed cortisol post-dexamethasone 3.0 µg/dL (SI: 83 nmol/L). Baseline ACTH was 7.7 pg/mL (SI: 1.7 pmol/L), suppressed to <3.2 pg/mL (SI: < 0.7 pmol/L) post-dexamethasone—consistent with ACTH-independent cortisol excess.

At age 9, the patient underwent the gold standard diagnostic testing for cyclical Cushing, the Liddle test. The test involves 6 days of urine collection: days 1 to 2 establish baseline urinary cortisol levels, days 3 to 4 assess response to low-dose dexamethasone, and days 5 to 6 evaluate response to high-dose dexamethasone. The patient’s cortisol increased paradoxically from 118.5 µg/day (SI: 327 nmol/day) to 402.0 µg/day (SI: 1109 nmol/day) over 6 days, consistent with PPNAD physiology. Genetic testing was performed with the following report: “A heterozygous variant, NM_002734.4(PRKAR1A):c.550-2_553delinsG, p.(Val184_Tyr185delinsAsp), was detected in exon 7 of this gene. This variant does not appear to have been reported in population (gnomAD, ESP, dbSNP) and clinical databases (ClinVar), or in the literature. The impact of this variant on RNA splicing as assessed by multiple algorithms (Alamut Suite) is: abolishment of canonical acceptor splice site. Based on the current evidence, this variant was classified as likely pathogenic, American College for Medical Genetics category 2”. Family testing revealed this to be a de novo pathogenic variant.

Further workup included echocardiogram and thyroid ultrasound, both of which were normal. During workup for scrotal swelling at initial presentation, the patient was found to have bilateral testicular masses with negative testicular cancer tumor markers: α-fetoprotein, human chorionic gonadotropin, and lactate dehydrogenase. The family declined invasive biopsy of these lesions. He was followed by pediatric urology with yearly serial ultrasound, and these were felt to be benign testicular tumors, presumed noncalcifying Sertoli cell tumors, associated with Carney complex (Fig. 1).

 

Ultrasound of bilateral testicular lesions. A) Left testicle. B) Right testicle.

Figure 1.

Ultrasound of bilateral testicular lesions. A) Left testicle. B) Right testicle.

Based on the presence of 2 major diagnostic criteria in combination with the molecular diagnosis of a likely pathogenic variant of PRKAR1A, the diagnosis of Carney complex was established.

Treatment

The patient was referred for surgical evaluation for consideration of adrenalectomy. A comprehensive discussion was conducted regarding the potential benefits and risks of unilateral vs bilateral adrenalectomy. The family was counseled that unilateral adrenalectomy might not fully resolve the hypercortisolemia and that a subsequent contralateral adrenalectomy could be necessary. In contrast, bilateral adrenalectomy would definitively address cortisol excess but result in permanent adrenal insufficiency requiring lifelong glucocorticoid and mineralocorticoid replacement. After multidisciplinary consultation with endocrinology and surgery, the decision was made to proceed with unilateral adrenalectomy.

Preoperative IV contrast-enhanced computed tomography (CT), reviewed by a physician experienced in PPNAD, demonstrated greater nodularity in the left adrenal gland compared to the right. Therefore, a laparoscopic left adrenalectomy was performed electively without intraoperative complications. The patient was discharged on postoperative day 1. At the time of surgery (age 9), his weight was 70 kg (100th percentile), and BMI was 31.6 kg/m² (99th percentile). The resected left adrenal gland was submitted for histopathologic evaluation. Gross examination revealed no overt nodularity (Fig. 2); however, microscopic analysis identified multiple pigmented cortical nodules consistent with PPNAD (Fig. 3).

 

Left adrenal gland gross morphology. No macroscopic nodularity appreciable.

Figure 2.

Left adrenal gland gross morphology. No macroscopic nodularity appreciable.

 

Hematoxylin and Eosin staining on microscopy of left adrenal gland demonstrating hyperpigmented nodule.

Figure 3.

Hematoxylin and Eosin staining on microscopy of left adrenal gland demonstrating hyperpigmented nodule.

Outcome and Follow-up

The patient was followed closely in the postoperative period and was last evaluated 11 months after adrenalectomy. He remained clinically well, with complete resolution of Cushingoid features and no evidence of recurrence. Since surgery, he had experienced significant weight loss of 11.4 kg, with a current weight of 58.6 kg and a BMI of 25 kg/m² (97th percentile).

In summary, this case describes a 9-year-old boy with ACTH-independent, cyclical Cushing syndrome secondary to PPNAD, associated with a de novo likely pathogenic variant in the PRKAR1A gene, consistent with Carney complex. Histopathologic analysis of the resected adrenal gland confirmed the diagnosis of PPNAD. At nearly 1 year post-unilateral adrenalectomy, the patient remains asymptomatic with no biochemical or clinical signs of disease recurrence.

Discussion

Diagnosis of cyclical Cushing is challenging due to the cyclical nature of the disease and the challenges with current available testing modalities. Late-night salivary cortisol testing was a more reliable screening tool in this case as the 24-hour urinary cortisol were affected by inaccurate collection. The cyclical nature of the disease, coupled with the necessity for appropriately timed testing, contributed to a prolonged interval before definitive diagnosis and treatment. Additionally, initial imaging was interpreted as normal, and it was only upon review by a clinician with expertise in PPNAD that subtle adrenal nodularity was identified on CT. Ultimately, the Liddle test and genetic testing were the highest yield for confirmation of disease. This test measures the suppressibility of endogenous cortisol following exogenous dexamethasone administration. In patients with PPNAD, a paradoxical increase in cortisol excretion may occur, attributed to glucocorticoid receptor–mediated activation of protein kinase A catalytic subunits [6]. The likely pathogenic variant found in this case is a novel, previously unreported, variant in the PRKAR1A gene. This rare variant impact both the canonical acceptor splice site in intron 6 as well as results in an in-frame protein change in exon 7 (Val184_Tyr185delinsAsp).

The treatment of PPNAD in the context of Carney complex is typically with bilateral adrenalectomy, as per Endocrine Society guidelines [5]. The drawback of bilateral adrenalectomy is the resultant adrenal insufficiency resulting in lifelong adrenal replacement. Unilateral adrenalectomy is an attractive option for the treatment of PPNAD given the ability to avoid adrenal insufficiency brought upon by bilateral adrenalectomy. Case reports and case series in adult patients have demonstrated variable success in unilateral treatment. In a case series of 17 patients with classic cyclical Cushing, 3 patients had recurrence of Cushing syndrome after unilateral adrenalectomy and were cured with contralateral adrenalectomy [7]. One patient had subtotal (<90%) left adrenalectomy and did not have recurrence with 66 years of follow-up [7].

A case series by Xu et al 2013 described 12 out of 13 patients with PPNAD successfully cured with unilateral adrenalectomy at median 47 months follow-up [8]. The side of adrenalectomy was selected based on CT/magnetic resonance imaging in 3 patients and adrenal iodine131-norcholesterol scintigraphy in the remaining. At our center, the iodine131-norcholesterol scintigraphy was not available so CT was the chosen imaging modality.

Ultimately, the efficacy and morbidity of unilateral adrenalectomy remains unclear. Furthermore, due to the rarity of PPNAD, the criteria for selection of patients who are candidates for unliteral adrenalectomy is challenging to establish. This case reports adds to the existing literature the clinical characteristics of one patient treated successfully by unilateral adrenalectomy.

Learning Points

  • Diagnosis of cyclical Cushing can be very challenging. Late-night salivary cortisol is more reliable than 24-hour urinary cortisol.
  • The paradoxical rise in cortisol in the Liddle test is confirmatory for cyclical Cushing, hence the testing should be considered early in affected patients.
  • Genetic testing assessing for Carney complex, PRAKA1A pathogenic variant, should be considered early in a patient with concern for cyclical Cushing and another system involved like testicular lesions.
  • Although bilateral adrenalectomy is the recommendation for PPNAD; in selected patients, unilateral adrenalectomy might provide several years of remission.

Acknowledgements

Thank you to Dr. Hong Wang, MD, PhD, DABMGG, FACMG, FCCMG, for her support on this project and in all things. Thank you to Dr. Andre Lacroix MD, FCAHS, for reviewing the preoperative CT adrenals with the team.

Contributors

All authors made individual contributions to authorship. F.B. was involved in the diagnosis and management of the patient. N.S. was responsible for the patient’s surgery. C.J.Z. was involved in the patient’s surgery and postoperative care. R.S., M.S., and P.W. were all medical professionals involved in his management and care. All authors contributed, reviewed, and approved the final draft.

Funding

No public or commercial funding.

Disclosures

None declared.

Informed Patient Consent for Publication

Signed informed consent obtained directly from the patient’s relatives or guardians

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Author notes

Natashia Seemann and Funmbi Babalola co-senior author.

© The Author(s) 2025. Published by Oxford University Press on behalf of the Endocrine Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. See the journal About page for additional terms.

Patient Finds Relief After Adrenal Gland Tumor Removed by Baylor Endocrine Surgeon

Hanna Pierce didn’t expect to learn she had a tumor on her adrenal gland during a CT scan. Just two weeks after delivering her second child and recovering from COVID-19, she went to urgent care with concerns about a possible blood clot. Instead, imaging revealed a tumor in her adrenal gland. “I didn’t have symptoms,” she said. “They were checking for something else and just happened to find it.”

That unexpected discovery in 2021 launched Pierce into a years-long journey that ultimately led to robotic surgery at Baylor Medicine with Dr. Feibi Zheng, an endocrine surgeon who specializes in treating adrenal tumors.

“Many people haven’t heard much about the adrenal glands,” said Zheng, assistant professor in the Division of Surgical Oncology. “They sit on top of the kidneys and produce hormones like cortisol that regulate everything from metabolism to the body’s stress response. If a tumor is overproducing cortisol, it can silently wreak havoc on the body over time.”

Doctors told Pierce that her tumor was consistently producing slightly elevated cortisol, a red flag. “My doctor told me if we left it alone, it could develop into diabetes or full-blown Cushing’s syndrome. At first, we just monitored it,” she said.

In the months and years that followed, Pierce did experience symptoms but attributed them to the demands of motherhood. “After my second child, I couldn’t lose weight no matter what I did. I had anxiety, constant fatigue in the afternoons, and I wasn’t sleeping well,” she recalled. “But I just chalked it up to being a mom of two.”

By 2024, her endocrinologist said it was time to act and referred her to Zheng, who confirmed the tumor was still producing excess cortisol. “Dr. Zheng told me I was going to feel so much better and explained what she was going to do,” Pierce said. “When I went to see her for the consultation, she was very informative. She didn’t pressure me to have surgery but explained everything to me.”

The Baylor Medicine endocrine surgery team, including Zheng and supported by physician assistant Holly Clayton, provided a seamless and collaborative care experience. “Our team-based model allows for better coordination and patient support,” said Clayton, who helped manage Pierce’s preoperative workup and performed her postop visit via telemedicine. “It was clear she wanted answers and a plan, and we were glad to be able to guide her through this process together.”

Zheng performed the adrenalectomy robotically, using a posterior approach — an advanced technique that involves going through the back instead of the front of the abdomen. “It’s a less common approach, but for the right patients, it can reduce pain and speed up recovery,” Zheng said.

Pierce said she felt calm going into the procedure. “Usually, I have white coat syndrome and feel anxious, but this time I didn’t. Everyone gave me step-by-step instructions, and Dr. Zheng explained everything clearly. I really felt like I was in good hands.”

Within a week or two of her June surgery, Pierce noticed changes. “I dropped four pounds almost immediately,” she said. “My face wasn’t as puffy. I felt less anxious and more like myself. Even though I was still recovering, I had more energy, and my body felt like it had reset.”

“Surgery to correct cortisol-producing tumors can make a major difference in quality of life, even if patients don’t meet the full criteria for a Cushing’s diagnosis,” Zheng said. “Mrs. Pierce’s case is a perfect example. She didn’t feel well, but she didn’t know why. Her endocrinologist saw [that] her metabolic parameters were getting worse. Now that the tumor is gone, her symptoms are improving, and her health trajectory is back on track.”

Just a month after surgery, Pierce says she has more energy and is continuing to lose weight. She’s relieved that a straightforward procedure made such a noticeable difference in how she feels.

From https://blogs.bcm.edu/2025/07/23/patient-finds-relief-after-adrenal-gland-tumor-removed/

A Second Look at Cushing Disease: Hypercortisolism Recurrence From Another Gland

Abstract

Cushing disease (CD) is the most common form of adrenocorticotropin (ACTH)-dependent Cushing syndrome (CS), whereas unilateral adrenal adenoma is the most common cause of ACTH-independent CS. However, the occurrence of different subtypes of CS in a single individual is very rare.

We present a case of a 44-year-old woman with distant histories of left adrenalectomy for an adrenal adenoma and total thyroidectomy following the diagnosis of papillary thyroid carcinoma.

She was later diagnosed with CD, achieving disease remission after pituitary surgery, but subsequently developed adrenal CS from the remaining right adrenal gland. After discussing the potential advantages and drawbacks of another adrenalectomy to remove her right adrenal gland, the patient declined surgery and opted for medical management. After 7 years of imaging follow-up studies, her right adrenal adenoma has remained stable in size and she is biochemically controlled on low-dose osilodrostat therapy. Our case emphasizes the importance of recognizing the rare occurrence of successfully treated CD followed by the recurrence of CS from a different gland, and the adoption of management strategies tailored to each individual patient’s preferences.

Introduction

Cushing syndrome (CS) arising from either pituitary or adrenal lesions is generally a rare condition, with an estimated prevalence of 10 to 15 cases per million individuals [1]. The majority of cases of endogenous CS are adrenocorticotropin (ACTH) dependent, accounting for 80% to 85% of cases. Among these cases, approximately 75% to 80% are attributed to pituitary corticotroph adenomas [23], whereas ACTH-independent CS constitutes 15% to 20% of cases, with 90% of such cases caused by unilateral adrenal adenomas [4]. Surgery is the preferred first-line treatment option for all cases of CS; however, approximately 20% cases may recur following surgical resection that necessitates second-line treatments, such as medical therapy, adrenalectomy, and radiation therapy [56].

Bilateral adrenalectomy may be considered for some Cushing disease (CD) patients, such as patients with persistent or recurrent disease following pituitary surgery, medication intolerance, nonadherent or unresponsive to medical therapy, or in situations where rapid normalization of life-threatening hypercortisolism is required. However, this procedure carries the risk of development of Nelson syndrome and lifelong use of glucocorticoid and mineralocorticoid replacement therapies [7]. Consequently, the role of bilateral adrenalectomy in patients with CS still remains a subject of debate and medical therapy is increasingly preferred [8]. Additionally, there is accumulating evidence affirming the effectiveness, safety, and tolerability of medical therapies leading to its increased use in the treatment of CS, subsequently allowing a more personalized approach for these patients [9].

We hereby present a case of a patient with distant histories of left adrenalectomy for an adrenal adenoma and total thyroidectomy for papillary thyroid carcinoma, who later developed CD that required transsphenoidal resection. After 6 years of disease remission following her transsphenoidal resection, the patient sought medical guidance for recurrence of her hypercortisolemic symptoms leading to the discovery of a right cortisol-secreting adrenal adenoma and the subsequent diagnosis of adrenal CS.

Case Presentation

A 44-year-old African American woman presented to our clinic in 2017 for worsening headaches, joint and muscle pains, muscle weakness, facial acne, facial roundness, facial plethora, pink abdominal striae, easy skin bruising, hair loss, and weight gain of 7 kg over 6 months. Her past surgical history included a left adrenalectomy for an adrenal adenoma in 2009, transsphenoidal resection of a corticotroph adenoma in 2011, and total thyroidectomy for papillary thyroid carcinoma in 2016. The left adrenalectomy was undertaken due to worsening hypertension and mildly elevated plasma metanephrines and catecholamines; however, the pathology revealed an adrenal cortical adenoma and not pheochromocytoma characteristics, demonstrating clear and eosinophilic cytoplasm, low mitotic activity, no significant atypia, and no vascular invasion, while immunohistochemistry was positive for inhibin, calretinin, and Melan-A. Genetic studies, including multiple endocrine neoplasia (MEN) 1 testing, were performed and were negative. Her past medical history included long-standing type 2 diabetes mellitus, metabolic dysfunction–associated steatohepatitis, and osteoporosis with compression fractures on her lumbar 4 to 5 vertebral bodies of her spine. The patient reported no known family history of endocrine disorders.

Diagnostic Assessment

Further testing at this clinic visit revealed elevated 24-hour urine cortisol levels of 49.3 μg/24 hours (135.73 nmol/24 hours) (reference range [RR] <45 μg/24 hours; <124.40 nmol/24 hours), unsuppressed overnight 1-mg dexamethasone suppression test with a postdexamethasone cortisol level of 15.8 µg/dL (435.88 nmol/L) (RR <5 µg/dL; <138 nmol/L), a low dehydroepiandrosterone sulfate level of 14 µg/dL (0.38 µmol/L) (RR: 32-240 µg/dL; 0.86-6.49 µmol/L), and normal 24-hour urine metanephrine levels. These findings, in conjunction with the patient’s clinical symptoms, raised concerns of recurrence of CS, especially considering a recent magnetic resonance imaging scan that had revealed some residual tissue in the sella described as a nonenhancing cystic foci in the left lateral aspect of the pituitary gland (Fig. 1).

Nonenhancing cystic foci in the left lateral aspect of the pituitary gland (A: sagittal view; B: coronal view).

Figure 1.

Nonenhancing cystic foci in the left lateral aspect of the pituitary gland (A: sagittal view; B: coronal view).

Follow-up laboratory testing revealed plasma morning ACTH of less than .1 pg/mL (<23.98 pmol/L) (RR: 7-63 pg/mL; 152.6-1373.4 pmol/L), whereas 24-hour urinary free cortisol and serum morning cortisol levels were within the normal range at 47 mcg/24 hours (129.98 nmol/24 hours) and 14.8 mcg/dL (408.67 nmol/L) (RR <45 μg/24 hours; 124.40 nmol/24 hours). Due to the low plasma morning ACTH level, an abdominal magnetic resonance imaging scan was performed that revealed a right adrenal adenoma measuring 6.3 × 3.5 cm. Additionally, her insulin-like growth factor 1 was elevated at 316 ng/mL (41.28 nmol/L) (RR: 7.44-25.44 nmol/L), while her prolactin levels were normal. Based on her elevated insulin-like growth factor 1 level, an oral glucose tolerance test for growth hormone suppression was performed that ruled out acromegaly, with a nadir growth hormone level of 0.20 ng/mL (0.61 mIU/L) (RR <1 ng/mL; <3.03 mIU/L) [10].

Suspecting recurrence of CS, her serum cortisol and ACTH levels were closely monitored over the course of a year (Table 1). During this period, her 24-hour urinary free cortisol levels were either mildly elevated or within the normal range at 47, 39, and 32 mcg/24 hours (129.74, 107.63, and 88.14 nmol/day, respectively) (RR <45 μg/24 hours; <124.40 nmol/24 hours), prompting further evaluation with late-night salivary cortisol measurements on 4 separate occasions that were consistently elevated at 0.154, 0.218, 0.298, and 0.109 μg/dL (4.24, 6.01, 8.21, and 3.01 nmol/L, respectively) (RR: <0.010-0.090 μg/dL; <0.28-2.48 nmol/L). The persistent suppression of ACTH levels supported the diagnosis of adrenal CS, and an abdominal computed tomography (CT) scan revealed a lipid-rich adenoma that was stable in size measuring 6.6 × 3.5 cm (Fig. 2).

Abdominal computed tomography images demonstrating adrenal adenoma in the right adrenal gland measuring 6.6 × 3.5 cm.

Figure 2.

Abdominal computed tomography images demonstrating adrenal adenoma in the right adrenal gland measuring 6.6 × 3.5 cm.

Table 1.

Comparison of hormonal parameters over time

Hormone tested Initial consult Post adrenal adenoma findingsa Post osilodrostat (1 y)b Reference range
8 Am ACTH <1.1 pg/mL
(<0.24 pmol/L)
<1.1 pg/mL
(<0.24 pmol/L)
3.5 pg/mL
(0.76 pmol/L)
7.2-63.3 pg/mL
(1.6-13.9 pmol/L)
8 Am serum cortisol 14.8 μg/dL
(408.67 nmol/L)
16.3 μg/dL
(448.1 nmol/L)
4.2 μg/dL
(115.8 nmol/L)
6.2-19.4 μg/dL
(171.1-534.41 nmol/L)

Reported in conventional units (SI units).

Abbreviation: ACTH, adrenocorticotropin.

aOne year after initial consult.

bTwo years and 9 months after initial consult.

Treatment

Because our patient was biochemically in remission following her pituitary surgery for CD for 6 years before the current presentation and now has biochemical evidence of recurrence of hypercortisolism due to adrenal CS, treatment options were discussed with the patient, including medical therapy and right adrenalectomy. The patient opted against a right adrenalectomy due to concerns about the need for lifelong hydrocortisone and fludrocortisone, and decided to commence medical therapy. The patient was offered the option to start either ketoconazole or a glucocorticoid receptor antagonist (mifepristone). The patient declined being treated with ketoconazole and mifepristone, as she was concerned about the side-effect profile of liver function test derangements due to her history of metabolic dysfunction–associated steatohepatitis and hypokalemia, respectively. Hence, she decided to start osilodrostat therapy and began a low dose of 1 mg twice daily.

Outcome and Follow-up

Annual follow-up CT imaging studies of the patient’s adrenal gland for the next 7 years after the current presentation have shown stability in the size of her right adrenal adenoma. Her blood pressure is well controlled with a single antihypertensive medication (amlodipine), and her glycated hemoglobin has remained in the nondiabetic range. Additionally, she has been experiencing increased energy levels and improvement in peripheral edema. While on osilodrostat therapy, she continues to be biochemically well controlled and has had only a single episode of adrenal insufficiency. A chronological overview of clinical events is displayed in Fig. 3. Because her morning serum cortisol level was relatively low (5.6 µg/dL [154.5 nmol/L]), her osilodrostat dose was further decreased to 1 mg in the evening in December 2024 and she was educated on the proper timing and administration of rescue oral hydrocortisone therapy of 5 to 10 mg, as needed, whenever she developed symptoms of adrenal insufficiency.

Chronological overview of clinical events.

Figure 3.

Chronological overview of clinical events.

Discussion

While previous reports have documented the coexistence of CD with a solitary adrenal adenoma [9], the unique aspect of our case lies in the development of a right adrenal adenoma after a distant history of surgical resection of a left adrenal adenoma and the achievement of disease remission following transsphenoidal resection of a pituitary corticotroph adenoma [4]. Several molecular studies have been performed to elucidate the pathogenesis of recurrent and refractory endocrine tumors, revealing links to genetic factors. The majority of previously reported cases of pituitary adenomas coexisting with adrenal adenoma are seen in patients with MEN syndromes [11]. The genetic testing for MEN 1 syndrome conducted on our patient yielded negative results. However, while MEN 1 was ruled out in our patient, it is possible that other, yet-unidentified genetic factors may contribute to this pattern of tumor formation, including Carney complex and McCune-Albright syndrome, that can be associated with adrenal adenomas and will need to be tested in our patient. Notably, our patient does not report any family history of endocrine tumor syndromes, and corticotroph adenomas are primarily sporadic monoclonal neoplasms that are rarely found in genetic syndromes [12].

In assessing our patient, we also noted a discrepancy between the overt cushingoid features in our patient and the marginal elevations in 24-hour urine free cortisol levels, underscoring the complexities in diagnosing and characterizing the severity of hypercortisolemic states. While 24-hour urine free cortisol remains an important screening test, its limitations must be acknowledged, including variability in 24-hour cortisol secretion, renal clearance differences, and the potential for episodic hypercortisolism that may not be fully captured in a single 24-hour urine collection measurement [13]. These factors have been substantiated by Petersenn et al [14], who reported significant intrapatient variability in 24-hour urinary free cortisol measurements, with a coefficient of variation of approximately 50%, highlighting the need for multiple sample collections to improve the reliability of assessments. These fluctuations, along with individual differences in cortisol sensitivity and metabolism, may account for the presence of varying phenotypic features that are not correlated with the degree of urinary hypercortisolism [15]. In our patient’s case, her clinical phenotype, imaging data, and the associated comorbidities are more useful in assessing the severity of CS, highlighting the importance of thorough and comprehensive clinical and biochemical assessments for CS patients.

Another aspect contributing to the complexity of our case included the treatment options that we could offer to our patient. She opted to avoid a second adrenalectomy, which has the potential of causing Nelson syndrome [9]. Initially, we offered the patient to start treatment with a steroidogenesis inhibitor such as ketoconazole, which has been used to treat hypercortisolism for more than 30 years with an average remission rate of 71.1% [9]. Another alternative was mifepristone, a glucocorticoid receptor antagonist used in the treatment of hyperglycemic patients with underlying CS [16]. However, our patient decided against being treated with ketoconazole and mifepristone due to the side-effect profiles of liver function test derangements and hypokalemia, respectively. Hence, she was offered osilodrostat treatment, to which she has responded well symptomatically, and her disease currently remains well-controlled in remission.

Because of the effectiveness of osilodrostat, adrenal insufficiency is a side effect that was commonly reported in previous pivotal clinical trials [1718]. More recently there have been several publications describing prolonged duration of adrenal insufficiency even after osilodrostat discontinuation that requires close monitoring, a finding that remains mechanistically unclear, especially with its short half-life of approximately 4 hours [1920]. Given the emerging reports of prolonged adrenal insufficiency after osilodrostat discontinuation [1920], close monitoring of serum cortisol levels and patient education to manage symptoms of adrenal insufficiency are essential for the long-term management of patients on osilodrostat therapy. Finally, eventual recovery of adrenal function has also been recently reported [21], hence clinicians are advised to exercise a low threshold of retesting the adrenal reserve of patients who have discontinued osilodrostat therapy.

Learning Points

  • This case highlights an unusual scenario in which a patient with CS presented with both adrenal and pituitary adenomas following prior surgical resections. Physicians should be aware of the rare occurrence of two different etiologies of CS in the same patient and should consider its possibility in patients with recurrent hypercortisolism.
  • The patient’s hesitation to undergo a second adrenalectomy demonstrates the importance of personalized medicine in individualizing the treatment plan for our patient.
  • Recent reports suggest that prolonged adrenal insufficiency after discontinuation of osilodrostat and the eventual recovery of adrenal function can occur in some patients. Clinicians should be aware of this and ensure close monitoring of adrenal function after discontinuing therapy.

Contributors

All authors made individual contributions to authorship. K.C.J.Y. was involved in the diagnosis and management of this case, manuscript review, and text editing. M.M.-G. was involved in manuscript preparation, writing, and submission. Both authors reviewed and approved the final draft.

Funding

This research did not receive any specific grants from any funding agencies in the public, commercial, or not-for-profit sectors.

Disclosures

None.

Informed Patient Consent for Publication

Signed informed consent obtained directly from the patient.

Data Availability Statement

Data sharing is not applicable to this article as no data sets were generated or analyzed during the present study.

From https://academic.oup.com/jcemcr/article/3/6/luaf089/8117205?login=false

Day 5, Cushing’s Awareness Challenge

In Day 9 on April 9, 2015, I wrote about how we got the Cushing’s colors of blue and yellow.  This post is going to be about the first Cushing’s ribbons.

I was on vacation  in September, 2001 when SuziQ called me to let me know that we had had our first Cushie casualty (that we knew about).

On the message boards, Lorrie wrote: Our dear friend, Janice died this past Tuesday, September 4, 2001. I received an IM from her best friend Janine, tonight. Janine had been reading the boards, as Janice had told her about this site, and she came upon my name and decided to IM me. I am grateful that she did. She said that she knew that Janice would want all of us to know that she didn’t just stop posting.

For all of the newcomers to the board that did not know Janice, she was a very caring individual. She always had something positive to say. Janice was 36 years old, was married and had no children. She had a miscarriage in December and began to have symptoms of Cushing’s during that pregnancy. After the pregnancy, she continued to have symptoms. When discussing this with her doctor, she was told that her symptoms were just related to her D&C. She did not buy this and continued until she received the accurate diagnosis of Cushing’s Syndrome (adrenal) in March of 2001. Tragically, Janice’s tumor was cancerous, a very rare form of Cushing’s.

Janice then had her tumor and adrenal gland removed by open adrenalectomy, a few months ago. She then began chemotherapy. She was very brave through this even though she experienced severe side effects, including weakness and dizziness. She continued to post on this board at times and even though she was going through so much, she continued with a positive attitude. She even gave me a referral to a doctor a few weeks ago. She was my inspiration. Whenever I thought I had it bad, I thought of what she was dealing with, and I gained more perspective.

Janice was having difficulty with low potassium levels and difficulty breathing. She was admitted to the hospital, a CT scan was done and showed tumor metastasis to the lungs. She then was begun on a more aggressive regimen of chemo. She was discharged and apparently seemed to be doing well.

The potassium then began to drop again, she spiked a temp and she was again admitted to the hospital. She improved and was set to be discharged and then she threw a blood clot into her lungs. She was required to be put on a ventilator. She apparently was at high risk for a heart attack. Her husband did not want her to suffer anymore and did not want her to suffer the pain of a heart attack and so chose for the doctors to discontinue the ventilator on Tuesday. She died shortly thereafter.

Janice was our friend. She was a Cushie sister. I will always remember her. Janine asked me to let her know when we get the Cushing’s ribbons made as she and the rest of Janice’s family would like to wear them in her memory. She said that Janice would want to do anything she could to make others more aware of Cushing’s.

The image at the top of the page shows the first blue and yellow ribbon which were worn at Janice’s funeral.  When we had our “official ribbons” made, we sent several to Janice’s family.

Janice was the first of us to die but there have been more, way too many more, over the years.  I’ll write a bit more about that on Day 21.

Cushing Syndrome due to a CRH- and ACTH-Secreting Silent Pheochromocytoma

Highlights

  • EAS should be considered in patients presenting with rapid progression of ACTH-dependent hypercortisolism causing severe clinical and metabolic abnormalities.
  • Ectopic ACTH secretion by a pheochromocytoma should be suspected in cases of ACTH-dependent Cushing syndrome in the presence of an adrenal mass.
  • If required, medical management with steroidogenesis inhibitors can be initiated at the time of EAS diagnosis to control clinical and metabolic derangements associated with severe hypercortisolemia
  • In patients with ACTH-dependent Cushing syndrome from an ectopic source, inhibiting steroidogenesis should be reserved for cases where the initial diagnosis is unclear or patients who are not suitable candidates for surgery.
  • Unilateral adrenalectomy is indicated in the management of ACTH/CRH-secreting pheochromocytomas and is typically curative.
  • Catecholamine blockade should be started prior to surgical removal of catecholamines-secreting pheochromocytomas.
  • A multidisciplinary approach is required to diagnose and manage this condition.

Abstract

Background/Objective

Ectopic co-secretion of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) in silent (i.e., noncatecholamine-secreting) pheochromocytoma is a rare cause of Cushing Syndrome (CS).

Case Report

A 57-year-old woman rapidly developed hypercortisolism, clinically manifesting as fatigue, muscle weakness, weight gain, and worsening hypertension, and biochemically characterized by hypokalemia and marked elevation of serum cortisol and plasma ACTH. This acute presentation suggested a diagnosis of ectopic ACTH syndrome (EAS). Imaging studies revealed a right adrenal mass that enhanced after administration of the radioisotope 68Ga-DOTATATE. Plasma metanephrines were normal in two separate measurements. The possibility of a silent pheochromocytoma was considered. After controlling her hypercortisolism with metyrapone and surgical preparation with alpha blockade, the patient underwent elective right adrenalectomy. Pathology revealed a pheochromocytoma that stained focally for ACTH and CRH. Postoperatively, cortisol levels normalized, the hypothalamic–pituitary–adrenal (HPA) axis was not suppressed, and clinical symptoms from hypercortisolism abated.

Discussion

Patients who exhibit a rapid progression of ACTH-dependent hypercortisolism should be screened for ectopic ACTH syndrome (EAS). The use of functional imaging radioisotopes (such as gallium DOTA-peptides), improves the detection of ACTH-secreting tumors. Preoperative treatment with steroidogenesis inhibitors helps control clinical and metabolic derangements associated with severe hypercortisolemia, while alpha blockade prevents the onset of an adrenergic crisis.

Conclusion

We present a rare case of EAS due to a silent pheochromocytoma that co-secreted ACTH and CRH. Pheochromocytoma should be considered in patients with EAS who have an adrenal mass even in the absence of excessive catecholamine secretion.

Key words

ectopic ACTH syndrome
Cushing Syndrome
non-catecholamine-secreting pheochromocytoma

Abbreviations

EAS

ectopic ACTH syndrome
CS

Cushing Syndrome
CRH

corticotropin-releasing hormone
ACTH

adrenocorticotropic hormone
DHEA-S

dehydroepiandrosterone sulfate
UFC

urine free cortisol
PRA

plasma renin activity

Introduction

Cushing Syndrome (CS) is rare, with an estimated incidence of 0.2-5.0 per million people per year, and prevalence of 39-79 per million (1). Ectopic ACTH Syndrome (EAS), a type of CS originating from extra-pituitary ACTH-secreting tumors, is uncommon. The prevalence of CS due to ACTH-secreting adrenal medullary lesions is not well established. However, EAS is observed in approximately 1.3% of all identified cases of pheochromocytoma (2). Recognizing EAS can be challenging due to its rarity, leading to delayed diagnosis.

Neuroendocrine neoplasms can produce CRH, which can lead to the secretion of ACTH by the pituitary. In certain cases, co-secretion of ACTH and CRH by an adrenal neoplasm has been observed. Only two published cases have provided definitive biochemical and immunohistochemical evidence of exclusive CRH secretion (3).

Case Report

A 57-year-old woman with a history of well-controlled hypertension sought care due to a two-month history of 60 lb weight gain, facial rounding, easy bruising, muscle weakness, lower extremity edema and acne. Her blood pressure control had worsened, and laboratory tests showed a markedly low serum potassium level of 1.8 mmol/L while taking hydrochlorothiazide. To manage her blood pressure, she was prescribed a calcium channel blocker, an angiotensin receptor blocker, and potassium supplements. However, her symptoms worsened, and she was referred to our emergency department. Blood pressure at presentation to our hospital was 176/86 mmHg. She had characteristic features of CS, including face rounding, supraclavicular fullness, dorsocervical fat accumulation, pedal edema, oral candidiasis, multiple forearm ecchymoses, and acneiform skin eruptions. No visible abdominal striae were present. She had no family history of pheochromocytoma, or multiple endocrine neoplasia type 2.

Serum cortisol level was 128 mcg/dL (normal range: 4.6-23.4) at 5 PM, with an ACTH level of 1055 pg/mL (normal range: 6-50); serum DHEA-S level was elevated at 445 mcg/dL (normal range: 8-188). Her 24-hour urine cortisol was at 12,566 mcg (normal range: 4.0-50.0). Plasma metanephrines were normal at <25 pg/mL (normal range: <57), and plasma normetanephrine was 44 (normal range: <148). A second plasma metanephrine measurement showed similar results. Serum aldosterone level and plasma renin activity were low at 2 ng/dL (normal range: 3-16) and 0.11 ng/mL/h (normal range: 0.25-5.82), respectively. Dopamine and methoxytyramine levels were not measured. An abdominal CT revealed a 4.8 x 4.5 x 5 cm right heterogeneously enhancing adrenal mass with a mean Hounsfield Unit of 68 in the non-contrast phase, and an absolute percentage washout of 30% (Fig 1A). The left adrenal gland appeared hyperplastic (Fig 1B). An Octreoscan, which was the in-hospital available nuclear medicine imaging modality, confirmed a 5.1 cm adrenal mass that was mild to moderately avid, with diffuse bilateral thickening of the adrenal glands and no other focal radiotracer avidity. A pituitary MRI did not show an adenoma, and EAS was suspected. Further evaluation with 68Ga-DOTATATE PET/CT (Fig 2) performed after her admission demonstrated an avid right adrenal mass consistent with a somatostatin receptor-positive lesion. No other suspicious tracer uptake was detected. These findings were consistent with a neuroendocrine tumor, such as pheochromocytoma.

  1. Download : Download high-res image (261KB)
  2. Download : Download full-size image

Fig. 1. Preoperative abdominal computed tomography scan showing a 4.8 x 4.5 x 5 cm right heterogeneously enhancing adrenal mass with irregular borders (A) and a hyperplastic left adrenal gland (B).

  1. Download : Download high-res image (219KB)
  2. Download : Download full-size image

Fig 2. 68Ga-DOTATATE PET/CT showing an avid right adrenal mass.

To control her symptoms while undergoing workup, the patient received oral metyrapone 500 mg thrice daily and oral ketoconazole 200 mg twice daily. Ketoconazole was stopped due to an increase in transaminases. The dosage of metyrapone was increased to 500 mg four times daily and later decreased to alternating doses of 250 mg and 500 mg four times daily. Within 3 weeks of starting medical therapy, serum cortisol level normalized at 20 mcg/dL. The 24-hour UFC improved to 246.3 mcg/24h. She experienced gradual improvement in facial fullness, acne, and blood pressure control.

The possibility of a silent pheochromocytoma was considered, and a-adrenergic blockade with doxazosin 1 mg daily was started 1 month prior surgery. She underwent surgery after two months of metyrapone therapy. With an unclear diagnosis and a large, heterogeneous adrenal mass, the surgical team elected to perform open adrenalectomy for en bloc resection due to concerns for an adrenal malignancy. The tumor was well-demarcated and did not invade surrounding structures (Figure 3A). H&E-stained sections showed classic morphologic features of a pheochromocytoma (Figure 3B), with immunohistochemistry demonstrating strong immunoreactivity for synaptophysin and chromogranin, and negative SF- I and inhibin stains excluding an adrenal cortical lesion. The sections analyzed by QuPath (4) revealed that approximately 4% of ce11s were ACTH cells, often found in isolation, and had a clear, high signal-to-noise staining (Figure 3C). CRH cells were less prevalent, comprising about 2.4% of the total analyzed cells, and tended to cluster together (Figure 3D). These cells had more background staining, resulting in a lower signal- to-noise ratio.

  1. Download : Download high-res image (663KB)
  2. Download : Download full-size image

Figure 3. Gross and Histopathological analysis of the patient’s pheochromocytoma. (A) Image of the gross excised specimen. (B) H&E staining (200x final magnification) demonstrates prominent vascularity and cells with finely granular, eosinophilic cytoplasm and salt-and-pepper chromatin. (C) ACTH staining (200x final magnification) shows clear and isolated positive cells, representing about 4.0% of the section analyzed by QuPath. (D) CRH staining (200x final magnification) reveals tight clusters of positive cells, accounting for 2.4% of the total cells. Positive (human placenta and hypothalamus) and negative (thyroid gland) control tissues performed as expected (data not shown).

The patient’s postoperative recovery was uneventful, with a short course of hydrocortisone which was stopped 1 week after surgery after HPA axis evaluation showed normal results. After one month, hypercortisolism had resolved, as shown by a normal 24-hour UFC at 28 mcg.

Administration of dexamethasone at 11 PM resulted in suppression of morning cortisol to 0.8 and 0.6 mcg/dL 1 and 7 months after surgery, respectively. Her liver function tests normalized, and blood pressure was well-controlled with amlodipine 10 mg daily and losartan 100 mg daily. Genetic testing for pheochromocytoma predisposition syndromes is currently planned.

Discussion

EAS accounts for 10-20% of cases of ACTH-dependent CS (5). This condition can be caused by several neuroendocrine neoplasms that produce bioactive ACTH (6) In the literature, we have found 99 documented cases of EAS caused by a pheochromocytoma. Of these, 93% showed ACTH expression. Only two cases have been reported with dual staining of ACTH and CRH (7). Exclusive CRH production has only been reported in two cases (8:9). However, the true prevalence of CRH-producing pheochromocytomas might be underestimated, as most cases testing for CRH expression was not performed.

Although the clinical presentation of EAS may be highly variable, there is often a rapid onset of hypercortisolism accompanied by severe catabolic symptoms. The diagnostic process should focus on identifying the location of a potential neuroendocrine neoplasm responsible for the ACTH secretion. Sometimes the peripheral origin of ACTH must be confirmed by inferior petrosal sinus sampling (IPSS). In this case, given the clinical presentation consistent with EAS, negative pituitary MRI, and the presence of an adrenal mass that needed to be removed independently, IPSS was not performed.

Neuroendocrine neoplasms express somatostatin receptors on their surface, which allow functional imaging using [11 lln]-pentetreotide (Octreoscan). However, Octreoscan has a low sensitivity in detecting occult EAS. In cases where the tumor is in the abdomen and pelvis, Octreoscan has limited utility in locating the source of ACTH (10). This increased risk of false negatives is caused by physiological tracer uptake by the liver, spleen, urinary tract, bowel, and gallbladder. The use of Gallium-68 labeled somatostatin receptor ligands (PET/CT 68Ga-DOTATATE) is more effective in detecting somatostatin receptors (SSTR2) than [11lln]-pentetreotide due to its higher spatial resolution and affinity (11)_ This test was performed after discharge form the hospital to rule out the presence of a second, smaller neuroendocrine tumor that the Octreoscan might have missed. A new molecular imaging technique targeting CRH receptors (68Ga CRH PET/CT) has shown potential in identifying tumors expressing CRH, but its availability remains limited (12). In our patient’s case, both the Octreoscan and 68Ga- DOTATATE successfully identified the adrenal tumor as a potential ACTH/CRH secretion source.

According to relevant guidelines, presurgical adrenergic blockade is recommended for patients with biochemical evidence of catecholamine excess (1314). Conversely, silent pheochromocytomas can generally be operated without alpha blockade (15). Despite this, we opted to administer pre-operative alpha blockade as a precautionary measure for this patient.

Pathology examination confirmed the diagnosis of pheochromocytoma. ACTH and CRH staining demonstrated that clear and significant populations of two separate ACTH and CRH positive cells were present in the excised pheochromocytoma. ACTH/CRH cells were dispersed throughout various regions of the pheochromocytoma rather than being well-defined, separate histological entities. As a result, there is no indication that this resulted from collision tumors, but rather random mutation and expansion of tumor cells into ACTH or CRH secreting cells. These results have limitations, including variation in ACTH and CRH expressing regions due to tumor heterogeneity, nonspecific binding of polyclonal antibodies, and normal low-rate false negative/positive detection using QuPath.

Post-surgical normal HPA activity was likely due to the de-suppression of the HPA axis by medical therapy, but it may also be explained by chronic stimulation of corticotroph cells induced by ectopic CRH secretion.

The standard approach to managing EAS involves surgical intervention. However, surgery may not be a viable option in cases where the source of ACTH production is unknown. Medical therapy to reduce or block excess cortisol can be used in such circumstances.

Conclusions

In conclusion, a pheochromocytoma causing EAS should be considered even in the absence of elevated plasma metanephrines. These tumors may simultaneously express ACTH and CRH.CRH.

References

Cited by (0)

Sources of support: None

Permission in the form of written consent from patient for use of actual test results was obtained.

Cushing in silent pheochromocytoma

Clinical Relevance

This case highlights the importance of considering ectopic ACTH secretion by a pheochromocytoma in patients presenting with rapid progression and considerable clinical hypercortisolism concomitant with an adrenal mass and elevated plasma ACTH. This represents an unusual manifestation of a specific subtype of ACTH/CRH-secreting pheochromocytoma that did not exhibit catecholamine secretion

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

These 2 authors contributed equally to this work

From https://www.sciencedirect.com/science/article/pii/S2376060524000075