Pituicytoma and Cushing’s Disease in a 7-Year-Old Girl: A Mere Coincidence?

Paola Cambiaso, Donato Amodio, Emidio Procaccini, Daniela Longo, Stefania Galassi, Francesca Diomedi Camassei, Marco Cappa

Download PDF

Abstract

Pituicytoma is a tumor extremely rare in childhood, with only 4 cases reported in literature. It is thought to arise from the specialized glial elements called “pituicytes.” The association of pituicytoma and Cushing’s disease (CD) has been described only once so far, in an adult patient.

A 7-year-old girl was referred for clinical signs of hypercortisolism, and a diagnosis of CD was made. MRI revealed 2 pathologic areas in the pituitary gland. The patient underwent surgery, with microscopic transsphenoidal approach, and a well-circumscribed area of pathologic tissue was identified and removed. Surprisingly, histologic and immunohistochemical study provided unequivocal evidence of pituicytoma. No pituitary adenoma could be identified.

For persistent hypercortisolism, the patient necessitated transsphenoidal endoscopic reintervention and 2 other lesions were removed. By immunohistological examination, these lesions were confirmed to be corticotropin-secreting adenoma. Unfortunately, there was no postoperative decrease in corticotropin and cortisol levels, and the patient underwent bilateral laparoscopic adrenalectomy.

Considering that we report a second case of association of pituicytoma and corticotropin-secreting adenoma, that CD is infrequent, and pituicytoma is extremely rare in childhood, the coexistence of these 2 tumors should not be considered a mere coincidence. To date, there is no conclusive evidence about the origin of these different subtypes of pituitary tumors. This case supports the hypothesis that these tumors share a common progenitor cell, which could be the folliculostellate cell.

View Full Text

Low Immediate Postoperative Serum-Cortisol Nadir Predicts The Short-Term, But Not Long-Term, Remission After Pituitary Surgery For Cushing’s Disease

Cushing’s disease is an ACTH-producing pituitary adenoma, and the primary treatment is microscopic or endoscopic transsphenoidal selective adenectomy. The aims of the present study were to evaluate whether the early postoperative S-cortisol level can serve as a prognostic marker for short- and long-term remission, and retrospectively review our own short and long term results after surgery for Cushing’s disease.

Methods: This single centre, retrospective study consists of 19 consecutive patients with Cushing’s disease who underwent transsphenoidal surgery.

S-cortisol was measured every 6 h after the operation without any glucocorticoid replacement. We have follow-up on all patients, with a mean follow-up of 68 months.

Results: At the three-month follow-up, 16 patients (84 %) were in remission; at 12 months, 18 (95 %) were in remission and at the final follow-up (mean 68 months), 13 (68 %) were in remission.

Five-years recurrence rate was 26 %. The mean postoperative S-cortisol nadir was significantly lower in the group of patients in remission than in the non-remission group at 3 months, but there was no difference between those in long-term remission compared to those in long-term non-remission.

The optimal cut-off value for classifying 3-month remission was 74 nmol/l.

Conclusion: We achieved a 95 % 1-year remission rate with transsphenoidal surgery for Cushing’s disease in this series of consecutive patients. However, the 5-year recurrence rate was 26 %, showing the need for regular clinical and biochemical controls in this patient group.

The mean postoperative serum-cortisol nadir was significantly lower in patients in remission at 3 months compared to patients not in remission at 3 months, but a low postoperative S-cortisol did not predict long-term remission.

Author: Jon Ramm-Pettersen Helene Halvorsen Johan EvangPål Rønning Per Hol Jens Bollers levJon Berg-Johnsen Eirik Helseth
Credits/Source: BMC Endocrine Disorders 2015, 15:62

Published on: 2015-10-26

Copyright by the authors listed above – made available via BioMedCentral (Open Access). Please make sure to read our disclaimer prior to contacting 7thSpace Interactive. To contact our editors, visit our online helpdesk. If you wish submit your own press release, click here.

Global Cushing’s Syndrome Market Size 2015

Cushing’s as money makers for drug companies 😦

~~~

Steroidogenesis inhibitors were responsible for approximately 28% of total drug sales in the 6MM in 2013, equating to around $50m. As a consequence of this trend, GlobalData expects overall revenues generated by this drug class to increase by approximately 390% to reach around $247m, encompassing 49% of total drug sales in the 6MM in 2018.

The expansion in this segment of the CS market is fuelled by the introduction of premium-priced pharmacological agents such as Novartis’ LCI699 and Cortendo AB’s NormoCort (COR-003) in the US, as well as the arrival of HRA Pharma’s Ketoconazole HRA (ketoconazole) to the European CS stage. One of the greatest unmet needs in this indication is a lack of effective drugs directed against the underlying cause of Cushing’s disease (the pituitary tumor).

Despite this demand, pharmaceutical companies are continuing to adopt a strategy that simply targets the adrenal glands. As a result, there is a vast amount of room for new or existing players to penetrate the market and capture considerable patient share.

Highlights

Key Questions Answered

Although the current standard of care (ketoconazole) is cheap and reasonably effective in most CS patients, it possesses worrying safety profiles, inconvenient dosing schedules, is difficult to obtain and can display waning efficacy over time. Newer medical treatments, for example, Novartis’ Signifor (pasireotide) and Corcept Therapeutics’ Korlym (mifepristone) address only some of these issues; yet, present their own limitations. The CS market is still marked by the existence of a multitude of unmet needs. What are the main unmet needs in this market? Will the drugs under development fulfil the unmet needs of the CS market?

The late-stage CS pipeline is sparsely populated; however, those drugs in development will be a strong driver of CS market growth. Which of these drugs will attain high sales revenues during 2013-2018? Which of these drugs will have the highest peak sales at the highest CAGR, and why?

Key Findings

One of the main drivers influencing growth in the Cushing’s syndrome market will be the introduction of second-generation steroidogenesis inhibitors, LCI699 and NormoCort (COR-003), in the US, which will rival existing standard of care medical treatments.

Another strong driver will be the arrival of Corcept Therapeutics’ Korlym (mifepristone) and HRA Pharma’s Ketoconazole HRA (ketoconazole) to the European CS market. Both drugs will stimulate significant growth here.

The launch of Novartis’ Signifor LAR (pasireotide) in the 6MM will equip physicians with a less frequently administered formulation of Signifor.

Reasons for inadequate CS treatment include poor physician awareness of the condition, delayed diagnosis, a lack of efficacious drugs for individuals suffering from severe hypersecretion, and a shortage of effective medicines targeting the source of Cushing’s disease.

Scope

Overview of Cushing’s syndrome, including epidemiology, etiology, pathophysiology, symptoms, diagnosis, and treatment guidelines.

Annualized Cushing’s syndrome therapeutics market revenues, annual cost of therapies and treatment usage pattern data from 2013 and forecast for five years to 2018.

Key topics covered include strategic competitor assessment, market characterization, unmet needs, clinical trial mapping and implications for the Cushing’s syndrome therapeutics market.

Pipeline analysis: comprehensive data split across different phases, emerging novel trends under development, and detailed analysis of late-stage pipeline drugs.

Analysis of the current and future market competition in the global Cushing’s syndrome therapeutics market. Insightful review of the key industry drivers, restraints and challenges. Each trend is independently researched to provide qualitative analysis of its implications.

Reasons to buy

Develop and design your in-licensing and out-licensing strategies through a review of pipeline products and technologies, and by identifying the companies with the most robust pipeline. Additionally a list of acquisition targets included in the pipeline product company list.

Develop business strategies by understanding the trends shaping and driving the Cushing’s syndrome therapeutics market.

Drive revenues by understanding the key trends, innovative products and technologies, market segments, and companies likely to impact the Cushing’s syndrome therapeutics market in the future.

Formulate effective sales and marketing strategies by understanding the competitive landscape and by analysing the performance of various competitors.

Identify emerging players with potentially strong product portfolios and create effective counter-strategies to gain a competitive advantage.

Track drug sales in the 6MM Cushing’s syndrome therapeutics market from 2013-2018.

Organize your sales and marketing efforts by identifying the market categories and segments that present maximum opportunities for consolidations, investments and strategic partnerships.

From http://www.medgadget.com/2015/10/global-cushings-syndrome-market-size-2015-share-trend-analysis-price-research-report-forecast.html

Pituitary ACTH Hypersecretion (Cushing’s Disease)

Browse Complete Report with TOC:

http://www.reportbazzar.com/product/pituitary-acth-hypersecretion-cushings-disease-pipeline-review-h1-2015/

Summary

This report provides comprehensive information on the therapeutic development for Pituitary ACTH Hypersecretion (Cushing’s Disease), complete with comparative analysis at various stages, therapeutics assessment by drug target, mechanism of action (MoA), route of administration (RoA) and molecule type, along with latest updates, and featured news and press releases. It also reviews key players involved in the therapeutic development for Pituitary ACTH Hypersecretion (Cushing’s Disease) and special features on late-stage and discontinued projects.

Report features investigational drugs from across globe covering over 20 therapy areas and nearly 3,000 indications. The report is built using data and information sourced from proprietary databases, Company/University websites, SEC filings, investor presentations and featured press releases from company/university sites and industry-specific third party sources, put together by team. Drug profiles/records featured in the report undergoes periodic updation following a stringent set of processes that ensures that all the profiles are updated with the latest set of information. Additionally, processes including live news & deals tracking, browser based alert-box and clinical trials registries tracking ensure that the most recent developments are captured on a real time basis.

The report enhances decision making capabilities and help to create effective counter strategies to gain competitive advantage. It strengthens R&D pipelines by identifying new targets and MOAs to produce first-in-class and best-in-class products.

Request Sample Report:  Pituitary ACTH Hypersecretion (Cushing’s Disease) – Pipeline Review, H1 2015

Scope

– The report provides a snapshot of the global therapeutic landscape of Pituitary ACTH Hypersecretion (Cushing’s Disease)

– The report reviews key pipeline products under drug profile section which includes, product description, MoA and R&D brief, licensing and collaboration details & other developmental activities

– The report reviews key players involved in the therapeutics development for Pituitary ACTH Hypersecretion (Cushing’s Disease) and enlists all their major and minor projects

– The report summarizes all the dormant and discontinued pipeline projects

– A review of the Pituitary ACTH Hypersecretion (Cushing’s Disease) products under development by companies and universities/research institutes based on information derived from company and industry-specific sources

– Pipeline products coverage based on various stages of development ranging from pre-registration till discovery and undisclosed stages

– A detailed assessment of monotherapy and combination therapy pipeline projects

– Coverage of the Pituitary ACTH Hypersecretion (Cushing’s Disease) pipeline on the basis of target, MoA, route of administration and molecule type

– Latest news and deals relating related to pipeline products

Reasons to buy

– Provides strategically significant competitor information, analysis, and insights to formulate effective R&D development strategies

– Identify emerging players with potentially strong product portfolio and create effective counter-strategies to gain competitive advantage

– Develop strategic initiatives by understanding the focus areas of leading companies

– Identify and understand important and diverse types of therapeutics under development for Pituitary ACTH Hypersecretion (Cushing’s Disease)

– Plan mergers and acquisitions effectively by identifying key players of the most promising pipeline

– Devise corrective measures for pipeline projects by understanding Pituitary ACTH Hypersecretion (Cushing’s Disease) pipeline depth and focus of Indication therapeutics

– Develop and design in-licensing and out-licensing strategies by identifying prospective partners with the most attractive projects to enhance and expand business potential and scope

– Modify the therapeutic portfolio by identifying discontinued projects and understanding the factors that drove them from pipeline”

 

 

From http://www.medgadget.com/2015/10/pituitary-acth-hypersecretion-cushings-disease-pipeline-review-h1-2015-by-reportbazzar.html

Cushing’s Disease – Quality of Life, Recurrence and Long-term Morbidity

European Endocrinology, 2015;11(1):34–8 DOI:10.17925/EE.2015.11.01.34

Abstract:

Cushing’s disease (CD) is a rare disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma. Chronic exposure to hypercortisolism leads to significant morbidities, which may be only partially reversible after remission of the disease, as well as to impairment of the health-related quality of life (HRQoL) and an increase in mortality. Transsphenoidal surgery (TSS) is the treatment of choice, and recurrence rates vary widely, confirming the need for lifelong follow-up. This review summarises the studies performed on HRQoL, recurrence rates and morbidities in patients who have CD.

Keywords: Cushing’s disease, quality of life, recurrence, morbidity
Received: February 18, 2015 Accepted March 16, 2015 CitationEuropean Endocrinology, 2015;11(1):34–8 DOI:10.17925/EE.2015.11.01.34

Correspondence: Isabel Huguet, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Rd, Headington, Oxford, OX3 7LJ, UK. E: ihm.huguet@gmail.com

Open Access: This article is published under the Creative Commons Attribution Noncommercial License, which permits any non-commercial use, distribution, adaptation and reproduction provided the original author(s) and source are given appropriate credit.

Cushing’s disease (CD) is a rare condition caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma. Chronic hypercortisolism is associated with the development of several morbidities that impair health-related quality of life (HRQoL) and contribute to an increased mortality rate.1–5 Obesity and metabolic alterations, hypertension and cardio-/ cerebrovascular complications, neuropsychiatric, muscle/skeletal, hypercoagulability/thromboembolism and immune consequences remain the most challenging.

Despite successful treatment of CD, a number of adverse consequences may persist long after cure or may even be irreversible. Moreover, the remission/cure criteria of CD vary between different studies, making comparison of the results difficult.

This paper aims to review and summarise the studies performed on HRQoL, recurrence rates and morbidities during long-term follow-up in patients who have CD.

Materials and Methods
The available literature was evaluated to address questions on HRQoL, recurrence and morbidities in CD. The literature search was conducted in two stages: (1) identification, review and inclusion of all the most relevant articles published in PubMed having the keywords CD, remission, cure, HRQoL and morbidities and (2) additional hand research conducted on the basis of bibliographies of identified articles, with articles referring to paediatric population and case reports excluded and with papers referring to Cushing’s syndrome (CS) reviewed and included only if presenting data on CD.

Quality of LifeHRQoL was initially assessed in CD patients using such generic measures as the Short Form (SF)-366 and the SF-127and measures of specific symptoms associated with the disease, including the Hospital Anxiety and Depression Scale (HADS).8 More recently, two disease-specific measures, the CushingQoL9 and the Tuebingen CD-2510,11 have been developed. Tables 1 and 2 present studies evaluating QoL using various questionnaires in CD patients having active disease or in remission.

Quality of life is significantly impaired not only in patients with active CD,9 but also in those in long-term remission,12,13regardless of the presence of hormonal deficiencies9 or treatment strategies,14,15 and patients who have CS report more negative illness perceptions than do patients who have other acute or chronic conditions.16

Quality of Life Assessed by Generic Questionnaires
Lindholm et al. reported that patients in remission for more than 5 years after initial surgery scored significantly worse in all subscales of SF-36 except for mental health and bodily pain.17 van Aken et al. evaluated patients cured for a mean period of 13.6 years and showed that general perceived well-being was reduced compared with healthy controls for all subscales in SF-36 and the Nottingham Health Profile (NHP). Moreover, such patients scored worse in all subscales of fatigue (Multidimensional Fatigue Inventory [MFI]-20), anxiety and depression (HADS).18 In comparison with subjects having other pituitary adenomas, patients who had CD were the most severely affected in all parameters of the SF-36 questionnaire.8 Sonino et al. studied patients who had CS in remission (the majority of them had CD) for 1 to 3 years and found significantly higher scores in anxiety, depression, anger, hostility and psychotic symptoms in the Symptom Rating Test (SRT) questionnaire in comparison with healthy controls.19 When the Beck Depression Inventory (BDI), SF-36 and the multidimensional body-self relations questionnaire (MBSRQ) were used, patients who had CD demonstrated lower QoL, lower body image perception and higher levels of depression compared with healthy controls, particularly in cases of persistent disease.15

Quality of Life Assessed with Disease-specific Questionnaires
Since 2008, two disease-specific questionnaires have been developed: CushingQoL and Tuebingen CD-25. The CushingQoL questionnaire was evaluated by Webb et al. in a multicentre European study. Active CD was associated with worse scores, but the presence of hypopituitarism or prior pituitary radiotherapy did not determine differences in the scores.9 Similarly, Santos et al. found that active CD patients scored worse on the CushingQoL questionnaire than did cured subjects.20 Wagenmakers et al. found that CD patients in remission without hormonal deficiencies scored significantly better than those having hormone deficiencies but significantly worse thanthe control group on 50 % of the items of the questionnaires.14 The Tuebingen CD-25 also demonstrated significant differences in all subscales and the total score between active CD patients and healthy controls.10,11

The post-operative improvement in HRQoL could be predicted by the presence of pre-operative HRQoL impairment, andyounger patients were more likely to improve. Patients without post-operative pituitary deficiencies improved significantly in the cognition scale.21,22

QoL does not change after short-term biochemical remission induced by medical therapy but may improve after sustained control of the hypercortisolism.23,24

To summarise, most of the results on HRQoL in CD derive from generic questionnaires raising concerns about how appropriate these are for the reliable and accurate assessment of the HRQoL of patients with this rare condition. Interestingly, despite the use of the same type of questionnaire in some studies, the subscales mainly affected show variation among them, suggesting that either CD affects several dimensions in QoL in a heterogeneous way in different patient groups, or these questionnaires are not specific enough. The newly developed questionnaires focus on important disease-specific aspects of the QoL, and their sensitivity in detecting changes renders them a very promising and useful tool in clinical practice.

Recurrence
Transsphenoidal surgery is the treatment of choice in CD, with immediate post-operative remission rates ranging from 59 % to 94 % and recurrence rates from 3 % to 46 %, both depending upon the definition criteria, the duration of follow-up, the number of patients studied and the inclusion of macroadenomas (see Table 3).2,25–29A small number of studies have used undetectable or very low post-operative serum cortisol levels as a strict criterion of remission, but most have defined effective remission as the resolution of clinical features and the reversal of hypercortisolism (in serum or urine), along with the recovery of cortisol suppressibility on dexamethasone administration or a normal cortisol circadian rhythm. Predictors of remission in CD include age at diagnosis, presence of hypertension or diabetes,4,5 response to desmopressin testing,30 identification of tumour at surgery and an adenoma histology positive for ACTH.31–33

Out of concern about recurrence of CD after initial remission, several parameters have been evaluated and are still matter of debate. Factors that have been associated with a low (but not zero) risk of CD recurrence include undetectable or low early morning serum levels of cortisol,33 low plasma levels of ACTH and prolonged requirement for glucocorticoid replacement after pituitary surgery. The effects of serum cortisol levels in the early post-operative period on predicting relapse have been assessed in various studies. No recurrences were found by Trainer et al.34during a median follow-up of 40 months in patients with a postoperative serum cortisol of <50 nmol/l; similar results were reported after a median follow-up of 58 months by McCance et al.35 In contrast to these findings, several series have reported recurrence rates of 11.5 % and 15 % despite a serum cortisol <50 nmol/l post surgery.27,28 Another possible parameter is the length of adrenal insufficiency post-TSS. Thus it has been suggested that patients who have a shorter duration of adrenal insufficiency have a significantly higher risk of relapse.36

Accordingly, after successful treatment of CD, there is no accurate criterion that can ensure lifelong cure, and although the evidence shows a more optimal outcome in patients who achieve severe cortisol deficiency after TSS, lifelong follow-up is mandatory.

Morbidities
CD is associated with significant comorbidities – metabolic and vascular complications, osteoporosis, neuropsychiatric dysfunction and immunosuppression – that increase mortality and affect daily life. A number of these may persist long after cure or may even be permanent.37

Metabolic and Vascular Complications
It is well recognised that CD increases cardiovascular risk, with hypertension and obesity the most common associated risk factors. The cardiovascular complications are part of the metabolic syndrome, but hypertension related to endogenous hypercortisolism is not simply a component of the CS-related metabolic syndrome. The renin–angiotensin system, mineralocorticoid activity, the sympathetic nervous system and the vasoregulatory systems have been reported to be involved in the pathophysiology of hypertension, but the mechanisms are only partially understood.38

The adverse cardiovascular risk profile of patients who have CD39is attributed to metabolic and vascular aberrations, as well as to changes in cardiac structure and function. Patients who have CD have increased leptin,40,41 resistin42 and pro-inflammatory agents, such as tumour necrosis factor-α and interleukin-6, C-reactive protein and low ghrelin levels.40 Moreover, they are characterised by a prothrombotic phenotype attributed to various abnormalities of coagulation and fibrinolysis: these include shortened activated partial thromboplastin time,43 increased factor VIII, von Willebrand factor, fibrinogen and plasminogen activator inhibitor-1,43 decreased fibrinolytic capacity44 and increased α2-antiplasmin.45 Endothelium-dependent flow-mediated vasodilatation is impaired, and several humoral markers of endothelial dysfunction (such as endothelin, homocysteine, vascular endothelial growth factor, osteoprotegerin and cell adhesion molecules) are elevated. Cardiac echocardiograms demonstrate left ventricular hypertrophy, concentric remodelling and diastolic and systolic dysfunction.

Persistent clinical abnormalities have been documented in terms of cardiovascular complications, showing that remission of hypercortisolaemia reduces, but does not completely eliminate them. Colao et al. reported that 27 % of patients having CD in remission for 5 years had persistently atherosclerotic plaques, compared with only 3 % of gender-, age- and body mass index–matched controls.45 Faggiano et al. also found persistence of the metabolic syndrome, vascular damage and atherosclerotic plaques after disease remission.46

Thus it is likely that disease remission does not entirely reverse cardiovascular morbidities affecting long-term survival and that lifelong follow-up is needed, with particular emphasis on cardiovascular risk factors.

Bone
Bone loss is attributed to decreased osteoblastic activity, increased osteoclastic bone resorption and impaired enteral calcium absorption. In the ERCUSYN study, osteopenia at the spine and hip was reported in 40 % and 46 % of patients who had CD, respectively, and osteoporosis at the spine and hip in 22 % and 12 %, respectively.47,48 Bone mineral density (BMD) does not completely recover following remission,49,50 though normalisation in some skeletal sites has been reported in the long-term.51

Glucocorticoid-induced vertebral fractures may develop even in the presence of normal or slightly low BMD. The risk of fractures at comparable BMD values with controls suggests that components of bone strength, not assessed by routine densitometric approaches, are also affected by glucocorticoids (including bone architecture, geometry and remodelling). Methods of assessment other than measurement of BMD are required, because despite the improvement of BMD after correction of hypercortisolism, the quality of the bone likely remains compromised.

Immune System
Hypercortisolism induces reversible immunosuppression. During hypercortisolaemia, autoimmune disorders improve but may worsen during remission and new ones develop.52 There is a high risk of superficial fungal, opportunistic or bacterial infections.

Neuropsychiatric Manifestations
Glucocorticoids are known to influence many functions of the central nervous system. Hypercortisolaemia is associated with depression, disrupted sleep and a wide range of cognitive impairments (derangement of memory – especially short-term – irritability and decreased concentration). High anxiety levels and low externalising behaviour are common emotional disorders.53Smaller hippocampal volumes and generalised brain atrophy have been described.54 Functional magnetic resonance imaging studies in patients having CD have demonstrated emotion-processing difficulties and hyperactivity in the frontal and subcortical regions, similar to major depressive disorders. After remission, hippocampal volumes increase and emotional and cognitive functions improve,53–55 but profound structural alterations in the brain remain such as smaller volumes in the anterior cingulate cortex, a structure involved in cognitive–affective processes and behavioural adaptation.56

The new data on persistent changes in the central nervous system after cure of CD support the hypothesis that psychiatric symptoms and cognitive impairment could be related to structural changes, providing the basis for future research on the neurobiological background of psychological dysfunction in this complex condition.

Conclusions
CD is associated with significant adverse sequelae affecting longterm morbidity, mortality and quality of life. To some extent, the duration and severity of hypercortisolism determine the possibility of reversion of the morbidities, but a number of manifestations may persist long after cure – possibly permanently. Generic questionnaires and disease-specific measures have evaluated many aspects of the quality of life impaired, not only during the active state, but also when in remission.

Despite initial successful treatment, there is a risk of relapse, and post-operative hypocortisolism is the most significant predictor of remission. These long-term and persistent changes are challenging to our understanding of hypercortisolaemia but in a clinical context suggest that long-term follow-up is essential in all patients having CD, even those apparently cured.

  1. Feelders RA, Pulgar SJ, Kempel A, et al., The burden of Cushing’s disease: clinical and health-related quality of life aspects, Eur J Endocrinol, 2012;167:311–26.
  2. Ntali G, Asimakopoulou A, Siamatras T, et al., Mortality in Cushing’s syndrome: systematic analysis of a large series with prolonged follow-up, Eur J Endocrinol, 2013;169:715–23.
  3. Yaneva M, Kalinov K, Zacharieva S, Mortality in Cushing’s syndrome: data from 386 patients from a single tertiary referral center, Eur J Endocrinol, 2013;169:621–7.
  4. Hassan-Smith ZK, Sherlock M, Reulen RC, et al., Outcome of Cushing’s disease following transsphenoidal surgery in a single center over 20 years, J Clin Endocrinol Metab, 2012;97:1194–201.
  5. Clayton RN, Raskauskiene D, Reulen R C, et al., Mortality and morbidity in Cushing’s disease over 50 years in Stokeon- Trent, UK: audit and meta-analysis of literature, J Clin Endocrinol Metab, 2011;96:632–42.
  6. Hawn MT, Cook D, Deveney C, et al., Quality of life after laparoscopic bilateral adrenalectomy for Cushing’s disease, Surgery, 2002;132:1064–8; discussion 1068–9.
  7. Thompson SK, Hayman AV, Ludlam WH, et al., Improved quality of life after bilateral laparoscopic adrenalectomy for Cushing’s disease: a 10-year experience, Ann Surg, 2007;245:790–4.
  8. van der Klaauw AA, Kars M, Biermasz NR, et al., Diseasespecific impairments in quality of life during long-term follow-up of patients with different pituitary adenomas, Clin Endocrinol, 2008;69:775–84.
  9. Webb SM, Badia X, Barahona MJ, et al., Evaluation of healthrelated quality of life in patients with Cushing’s syndrome with a new questionnaire, Eur J Endocrinol, 2008;158:623–30.
  10. Milian M, Teufel P, Honegger J, et al., The development of the Tuebingen Cushing’s disease quality of life inventory (Tuebingen CD-25), part I: construction and psychometric properties, Clin Endocrinol, 2012;76:851–60.
  11. Milian M, Teufel P, Honegger J, et al., The development of the Tuebingen Cushing’s disease quality of life inventory (Tuebingen CD-25), part II: normative data from 1784 healthy people, Clin Endocrinol, 2012;76:861–7.
  12. Lindsay JR, Nansel T, Baid S, et al., Long-term impaired quality of life in Cushing’s syndrome despite initial improvement after surgical remission, J Clin Endocrinol Metab, 2006;91:447–53.
  13. Heald AH, Ghosh S, Bray S, et al., Long-term negative impact on quality of life in patients with successfully treated Cushing’s disease, Clin Endocrinol, 2004;61:458–65.
  14. Wagenmakers MA, Netea-Maier RT, Prins JB, et al., Impaired quality of life in patients in long-term remission of Cushing’s syndrome of both adrenal and pituitary origin: a remaining effect of long-standing hypercortisolism? Eur J Endocrinol, 2012;167:687–95.
  15. Alcalar N, Ozkan S, Kadioglu P, et al., Evaluation of depression, quality of life and body image in patients with Cushing’s disease, Pituitary, 2013;16:333–40.
  16. Tiemensma J, Kaptein AA, Pereira AM, et al., Negative illness perceptions are associated with impaired quality of life in patients after long-term remission of Cushing’s syndrome, Eur J Endocrinol, 2011;165:527–35.
  17. Lindholm J, Juul S, Jørgensen JO, et al., Incidence and late prognosis of Cushing’s syndrome: a population-based study, J Clin Endocrinol Metab, 2001;86:117–23.
  18. van Aken MO, Pereira AM, Biermasz NR, et al., Quality of life in patients after long-term biochemical cure of Cushing’s disease, J Clin Endocrinol Metab, 2005;90:3279–86.
  19. Sonino N, Bonnini S, Fallo F, et al., Personality characteristics and quality of life in patients treated for Cushing’s syndrome, Clin Endocrinol, 2006;64:314–8.
  20. Santos A, Resmini E, Martínez-Momblán MA, et al., Psychometric performance of the CushingQoL questionnaire in conditions of real clinical practice, Eur J Endocrinol, 2012;167:337–42.
  21. Milian M, Honegger J, Teufel P, et al., Tuebingen CD-25 is a sensitive tool to investigate health-related quality of life in Cushing’s disease patients in the course of the disease, Neuroendocrinology, 2013;98:188–99.
  22. Psaras T, Milian M, Hattermann V, et al., Predictive factors for neurocognitive function and Quality of Life after surgical treatment for Cushing’s disease and acromegaly, J Endocrinol Invest, 2011;34:e168–77.
  23. van der Pas R, de Bruin C, Pereira AM, et al., Cortisol diurnal rhythm and quality of life after successful medical treatment of Cushing’s disease, Pituitary 2013;16:536–44.
  24. Webb SM, Ware JE, Forsythe A, et al., Treatment effectiveness of pasireotide on health-related quality of life in patients with Cushing’s disease, Eur J Endocrinol, 2014;171:89–98.
  25. Aranda G, Enseñat J, Mora M, et al., Long-term remission and recurrence rate in a cohort of Cushing’s disease: the need for long-term follow-up, Pituitary, 2015;18:142–9.
  26. Atkinson AB, Kennedy A, Wiggam MI, et al., Long-term remission rates after pituitary surgery for Cushing’s disease: the need for long-term surveillance, Clin Endocrinol, 2005;63:549–59.
  27. Yap LB, Turner HE, Adams CB, et al., Undetectable postoperative cortisol does not always predict long-term remission in Cushing’s disease: a single centre audit, Clin Endocrinol, 2002;56:25–31.
  28. Alexandraki KI, Kaltsas GA, Isidori AM, et al., Long-term remission and recurrence rates in Cushing’s disease: predictive factors in a single-centre study, Eur J Endocrinol, 2013;168:639–48.
  29. Patil CG, Prevedello DM, Lad SP, et al., Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery, J Clin Endocrinol Metab, 2008;93:358–62.
  30. Castinetti F, Martinie M, Morange I, et al., A combined dexamethasone desmopressin test as an early marker of postsurgical recurrence in Cushing’s disease, J Clin Endocrinol Metab, 2009;94:1897–903.
  31. Losa M, Bianchi R, Barzaghi R, et al., Persistent adrenocorticotropin response to desmopressin in the early postoperative period predicts recurrence of Cushing’s disease, J Clin Endocrinol Metab, 2009;94:3322–8.
  32. Acebes JJ, Martino J, Masuet C, et al., Early post-operative ACTH and cortisol as predictors of remission in Cushing’s disease, Acta Neurochir, 2007;149:471–7; discussion 477–9.
  33. Dimopoulou C, Schopohl J, Rachinger W, et al., Long-term remission and recurrence rates after first and second transsphenoidal surgery for Cushing’s disease: care reality in the Munich Metropolitan Region, Eur J Endocrinol, 2013;170:283–92.
  34. Trainer PJ, Lawrie HS, Verhelst J, et al., Transsphenoidal resection in Cushing’s disease: undetectable serum cortisol as the definition of successful treatment, Clin Endocrinol (Oxford), 1993 Jan;38(1):73–8.
  35. McCance DR, Besser M, Atkinson AB, Assessment of cure after transsphenoidal surgery for Cushing’s disease, Clin Endocrinol (Oxford), 1996 Jan;44(1):1–6.
  36. Bochicchio D, Losa M, Buchfelder M, Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s Disease Survey Group, J Clin Endocrinol Metab, 1995 Nov;80(11):3114–20.
  37. Ntali G, Grossman A, Karavitaki N, Clinical and biochemical manifestations of Cushing’s, Pituitary, 2015 Jan 10 [Epub ahead of print].
  38. Isidori AM, Graziadio C, Paragliola RM, et al., The hypertension of Cushing’s syndrome: controversies in the pathophysiology and focus on cardiovascular complications, J Hypertens, 2015 Jan;33(1):44–60.
  39. Mancini T, Kola B, Mantero F, et al., High cardiovascular risk in patients with Cushing’s syndrome according to 1999 WHO/ ISH guidelines, Clin Endocrinol, 2004;61:768–77.
  40. Libè R, Morpurgo PS, Cappiello V, et al., Ghrelin and adiponectin in patients with Cushing’s disease before and after successful transsphenoidal surgery, Clin Endocrinol, 2005;62:30–6.
  41. Veldman RG, Frölich M, Pincus SM, et al., Hyperleptinemia in women with Cushing’s disease is driven by high-amplitude pulsatile, but orderly and eurhythmic, leptin secretion, Eur J Endocrinol, 2001;144:21–7.
  42. Krsek M, Silha JV, Jezková J, et al., Adipokine levels in Cushing’s syndrome: elevated resistin levels in female patients with Cushing’s syndrome, Clin Endocrinol, 2004;60:350–7.
  43. Manetti L, Bogazzi F, Giovannetti C, et al., Changes in coagulation indexes and occurrence of venous thromboembolism in patients with Cushing’s syndrome: results from a prospective study before and after surgery, Eur J Endocrinol, 2010;163:783–91.
  44. van der Pas R, Leebeek FW, Hofland LJ, et al., Hypercoagulability in Cushing’s syndrome: prevalence, pathogenesis and treatment, Clin Endocrinol, 2013;78: 481–8.
  45. Colao A, Pivonello R, Spiezia S, et al., Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure, J Clin Endocrinol Metab, 1999;84:2664–72.
  46. Faggiano A, Pivonello R, Spiezia S, et al., Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission, J Clin Endocrinol Metab, 2003;88:2527–33.
  47. Valassi E, Santos A, Yaneva M, et al., The European Registry on Cushing’s syndrome: 2-year experience—baseline demographic and clinical characteristics, Eur J Endocrinol, 2011;165:383–92.
  48. Toth M, Grossman A, Glucocorticoid-induced osteoporosis: lessons from Cushing’s syndrome, Clin Endocrinol, 2013 Jul;79(1):1–11, doi: 10.1111/cen.12189.
  49. Di Somma C, Pivonello R, Loche S, et al., Effect of 2 years of cortisol normalization on the impaired bone mass and turnover in adolescent and adult patients with Cushing’s disease: a prospective study, Clin Endocrinol, 2003;58: 302–8.
  50. Barahona MJ, Sucunza N, Resmini E, et al., Deleterious effects of glucocorticoid replacement on bone in women after long-term remission of Cushing’s syndrome, J Bone Miner Res, 2009;24:1841–6.
  51. Kristo C, Jemtland R, Ueland T, et al., Restoration of the coupling process and normalization of bone mass following successful treatment of endogenous Cushing’s syndrome: a prospective, long-term study, Eur J Endocrinol, 2006;154: 109–18.
  52. da Mota F, Murray C, Ezzat S, Overt immune dysfunction after Cushing’s syndrome remission: a consecutive case series and review of the literature, J Clin Endocrinol Metab, 2011;96:E1670–4.
  53. Dimopoulou C, Ising M, Pfister H, et al., Increased prevalence of anxiety-associated personality traits in patients with Cushing’s disease: a cross-sectional study, Neuroendocrinology, 2013;97:139–45.
  54. Toffanin T, Nifosì F, Follador H, et al., Volumetric MRI analysis of hippocampal subregions in Cushing’s disease: a model for glucocorticoid neural modulation, Eur Psychiatry, 2011;26:64–7.
  55. Bourdeau I, Bard C, Noël B, et al., Loss of brain volume in endogenous Cushing’s syndrome and its reversibility after correction of hypercortisolism, J Clin Endocrinol Metab, 2002; 87:1949–54.
  56. Andela CD, van der Werff SJ, Pannekoek JN, et al., Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in patients with long-term remission of Cushing’s disease: a case–control study, Eur J Endocrinol, 2013;169:811–9.

From http://www.touchendocrinology.com/articles/cushing-s-disease-quality-life-recurrence-and-long-term-morbidity/page/1/0