Lowest cortisol levels found in women with overweight, mild obesity

Women with overweight and class I obesity appear to have the lowest cortisol levels, while more significant obesity appears to be associated with higher cortisol levels, according to recent findings.

In the cross-sectional study, Karen K. Miller, MD, of Massachusetts General Hospital, and colleagues evaluated 60 premenopausal women aged 18 to 45 years: 28 with overweight or obesity, 18 with anorexia nervosa and 21 healthy controls at normal weight. Overweight was defined as BMI 25 to 29.9 kg/m2, and obesity was classified as class I (30-34.9 kg/m2) and class II (35-39 kg/m2).

Anorexia nervosa was classified based on DSM-IV criteria, which includes extreme fear of weight gain, body image dysmorphia, weight that is 85% of ideal body weight and cessation of menstruation for 3 consecutive months. Participants were asked to collect 24-hour urine samples, in addition to 11 p.m. and 7 a.m. salivary samples within 1 week of an inpatient hospital visit. For each sample, researchers assessed creatinine clearance, and urinary free cortisol/creatinine clearance was calculated for each specimen to account for the decreased creatinine and filtered cortisol linked to anorexia nervosa.

During the inpatient visit, participants underwent placement of an IV catheter and fasting blood was sampled every 20 minutes from 8 p.m. to 8 a.m. Fasting cortisol and cortisol binding globulin concentrations were measured at 8 a.m. Participants were asked to take 5 g of oral dexamethasone every 6 hours for 48 hours to decrease endogenous disparities in cortisol levels.

The researchers found that with the exception of dexamethasone-suppression-CRH testing, all cortisol measures exhibited a U-shaped association with BMI, most notably urinary free cortisol/creatinine clearance (P = .0004) and mean overnight serum cortisol (P < .0001).

The lowest cortisol levels were seen in the overweight-class I obesity range, and these were also associated with visceral fat tissue and total fat mass. Participants with anorexia nervosa had higher mean cortisol levels than participants with overweight or obesity. Attenuated inverse relationships were seen between lean mass and some measures of cortisol, and most measures of cortisol were inversely related to posterior-anterior spine and total hip bone mineral density.

According to the researchers, these findings have not determined the precise nature of the relationship between cortisolemia, hypothalamic-pituitary-adrenal activation and adiposity.

“The [hypothalamic-pituitary-adrenal] axis activation associated with obesity and excess adiposity raises the question of whether hypercortisolemia contributes to increased adiposity in the setting of caloric excess, whether increased adiposity drives [hypothalamic-pituitary adrenal] activation, or whether the relationship between hypercortisolemia and adiposity is bidirectional,” the researchers wrote. – by Jennifer Byrne

Disclosure: The researchers report no relevant financial disclosures.

From http://www.healio.com/endocrinology/obesity/news/online/%7B73cac1c4-af30-4f24-89e3-86f50d05aaa2%7D/lowest-cortisol-levels-found-in-women-with-overweight-mild-obesity

HSA issues alert on 2 illegal pain relief products

SINGAPORE: The Health Sciences Authority (HSA) on Wednesday (Jun 3) issued an alert on two illegal health products sold in Singapore, one of which caused a consumer to be hospitalised for adverse reactions.

HSA added that investigations are ongoing and laboratory tests have found undeclared potent medicinal ingredients in the products.

A woman in her 40s has been hospitalised for “delirium (confusion), high blood sugar, electrolyte imbalance in her blood and suspected Cushing’s syndrome (characterised by a round face or ‘moon face’ and upper body obesity within thin limbs)” after consuming an illegal pain relief product, said HSA.

The woman had been consuming the “powder packed in unlabelled pink sachets” for pain relief over a prolonged period of time because she believed it had “miraculous powers”, HSA added. The powder was found to contain the illegal ingredients Chlorpheniramine and Dexamethasone.

The patient had bought the powder from “an auntie who sells powdered medicine” – a woman in her 60s who would personally deliver the products to the addresses provided by the customers, said HSA.

HSA raided the peddler’s home and discovered another illegal health product – black pills labelled “special effect rheumatism pill”. They were found to contain Dexamethasone and Chlorpheniramine, as well as Bromhexine.

Dexamethasone could cause diabetes, high blood pressure, cataracts and Cushing’s syndrome, among other adverse reactions. Chlorpheniramine and Bromhexine could cause symptoms including diarrhoea, nausea and vomiting.

The authority advised members of the public who have purchased or are consuming the products to:

Consult a doctor as soon as possible before stopping usage as sudden discontinuation of steroids without proper medical supervision can cause serious withdrawal symptoms

Avoid buying health products from street peddlers, unknown websites or sellers, or even from well-meaning friends or relatives

Be wary of health products not properly labelled with ingredient information or make exaggerated claims like “instant pain relief”

Seek appropriate medical treatment from a doctor for the management of acute and chronic medical conditions such as arthritis and rheumatism

via HSA issues alert on 2 illegal pain relief products – Channel NewsAsia.

Cushing’s syndrome vs simple obesity. How can a needle be found in the haystack?

Endocrinology Today 02/2015; 4(1):30-35.

Clinical recognition of Cushing’s syndrome should generally follow from the observation of a constellation of compatible clinical features that progress over time. Screening for Cushing’s syndrome in patients with individual features of the metabolic syndrome, such as obesity, hypertension and hyperglycaemia, is not recommended.

Early diagnosis reduces unnecessary suffering and the ultimate lifetime sequelae of Cushing’s syndrome. Confirmation involves the demonstration of biochemical hypercortisolism, and the extent of diagnostic testing needs to be based on the degree of clinical suspicion.
Read the whole article here, in PDF format

Screening for Cushing’s syndrome: Is it worthwhile?

The data suggests that Cushing is not frequent enough to support the use of routine screening in patients with morbid obesity and type 2 DM. Also only 1 % of hypertensive patients have secondary hypertension due to CS. However, screening should be considered in young patients with resistant DM and/or hypertension. Among patients with osteoporosis and vertebral fractures up to 5 % were diagnosed with subclinical hypercortisolism; most of these had adrenal adenoma. Screening for CS is important in subjects with adrenal incidentaloma, and many studies show a high prevalence (~10 %) of Cushing or subclinical CS in these patients.

Abstract

Introduction

Cushing’s syndrome (CS) is a rare disease characterized by a collection of signs and symptoms, also common in the general population without elevated cortisol secretion. During the last years more patients with CS are identified earlier and with milder disease. Many of these patients are diagnosed during screening efforts performed for certain or isolated complaints like weight gain, diabetes mellitus (DM), hypertension, osteoporosis, elevated white blood cell counts and more.

Methods

In this review article the most popular screening test performed in the studies cited was the 1-mg dexamethasone suppression test.

Conclusions

Cushing is not frequent enough to support the use of routine screening in patients with morbid obesity and type 2 DM. Also only 1 % of hypertensive patients have secondary hypertension due to CS. However, screening should be considered in young patients with resistant DM and/or hypertension. Among patients with osteoporosis and vertebral fractures up to 5 % were diagnosed with subclinical hypercortisolism; most of these had adrenal adenoma. Screening for CS is important in subjects with adrenal incidentaloma, and many studies show a high prevalence (~10 %) of Cushing or subclinical CS in these patients.

Buy this article for $39.00 at http://link.springer.com/article/10.1007%2Fs11102-015-0634-9

Scientists Find Potential Therapeutic Target for Cushing’s Disease

Scientists at the Salk Institute for Biological Studies have identified a protein that drives the formation of pituitary tumors in Cushing’s disease, a development that may give clinicians a therapeutic target to treat this potentially life-threatening disorder.

The protein, called TR4 (testicular orphan nuclear receptor 4), is one of the human body’s 48 nuclear receptors, a class of proteins found in cells that are responsible for sensing hormones and, in response, regulating the expression of specific genes. Using a genome scan, the Salk team discovered that TR4 regulates a gene that produces adrenocorticotropic hormone (ACTH), which is overproduced by pituitary tumors in Cushing’s disease (CD). The findings were published in the May 6, 2013 early online edition of Proceedings of the National Academy of Sciences.

The diagram shows how adrenocorticotropin hormone is secreted in Cushing's disease.

“We were surprised by the scan, as TR4 and ACTH were not known to be functionally linked,” says senior author Ronald M. Evans, a professor in Salk’s Gene Expression Laboratory and a lead researcher in the Institute’s Helmsley Center for Genomic Medicine. “TR4 is driving the growth and overexpression of ACTH. Targeting this pathway could therapeutically benefit treatment of CD.”

In their study, Evans and his colleagues discovered that forced overexpression of TR4 in both human and mouse cells increased production of ACTH, cellular proliferation and tumor invasion rates. All of these events were reversed when TR4 expression was reduced.

First described more than 80 years ago, Cushing’s disease is a rare disorder that is caused by pituitary tumors or excess growth of the pituitary gland located at the base of the brain. People with CD have too much ACTH, which stimulates the production and release of cortisol, a hormone that is normally produced during stressful situations.

While these pituitary tumors are almost always benign, they result in excess ACTH and cortisol secretion, which can result in various disabling symptoms, including diabetes, hypertension, osteoporosis, obesity and psychological disturbances. Surgical removal of the tumors is the first-line therapy, with remission rates of approximately 80 percent; however, the disease recurs in up to 25 percent of cases.

Drugs such as cabergoline, which is used to treat certain pituitary tumors, alone or in combination with ketoconazole, a drug normally used to treat fungal infections, have been shown to be effective in some patients with Cushing’s disease. More recently, mefipristone-best known as the abortion pill RU-486-was approved by the FDA to treat CD. Despite these advances in medical therapy, the Salk scientists say additional therapeutic approaches are needed for CD.

“Pituitary tumors are extremely difficult to control,” says Michael Downes, a senior staff scientist in the Gene Expression Laboratory and a co-author of the study. “To control them, you have to kill cells in the pituitary gland that are proliferating, which could prevent the production of a vital hormone.”

Previous studies have found that, by itself, TR4 is a natural target for other signaling molecules in the pituitary. Small-molecule inhibitors that have been developed for other cancers could be potentially applied to disrupt this signaling cascade. “Our discovery,” says Evans, a Howard Hughes Medical Institute investigator and holder of the March of Dimes Chair in Molecular and Developmental Biology, “might lead clinicians to an existing drug that could be used to treat Cushing’s disease.

Notes about this neurogenetics and Cushing’s disease research

Other researchers on the study were Li Du, Marvin Bergsneider, Leili Mirsadraei, Stephen H. Young, William H. Yong and Anthony P. Heaney of the David A. Geffen School of Medicine at the University of California, Los Angeles, and Johan W. Jonker of the University of Groningen.

The study was supported by the National Institutes of Health, the Leona M. and Harry B. Helmsley Charitable Trust, the Samuel Waxman Cancer Research Foundation, the Jonsson Comprehensive Cancer Center at UCLA, and Ipsen/Biomeasure.

Contact: Andy Hoang – Salk Institute
Source: Salk Institute press release
Image Source: The ACTH Cushing’s disease diagram is credited to NIDDK/NIH and is available in the public domain.
Original Research: Abstract for “Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease” by Li Du, Marvin Bergsneider, Leili Mirsadraei, Steven H. Young, Johan W. Jonker, Michael Downes, William H. Yong, Ronald M. Evans, and Anthony P. Heaney in Proceedings of the National Academy of Sciences. Published May 6 2013 doi: 10.1073/pnas.1306182110

From http://neurosciencenews.com/tr4-cushings-disease-acth-neurogenetics-120/