Imaging Technique Measures Tumor Stiffness to Aid Surgical Planning

screenshot-2017-01-27-11-04-44

 

Important steps in planning tumor surgery include identifying borders between tumor and healthy tissue and assessing the tumor stiffness, e.g. hard and calcified or soft and pliant. For decades, tumors near the surface of the body have been evaluated for stiffness by simple palpation—the physician pressing on the tissue. Because tumors within the skull cannot be palpated, researchers used Magnetic Resonance Elastography (MRE) to assess pituitary tumor stiffness by measuring waves transmitted through the skull into pituitary macroadenomas (PMAs). MRE reliably identified tumors that were soft enough for removal with a minimally-invasive suction technique versus harder tumors requiring more invasive surgery.

“The group developed brain MRE several years ago and is now successfully applying it to clinical diagnosis and treatment,” explained Guoying Liu, Ph.D., Director of the NIBIB Program in Magnetic Resonance Imaging. “This development of a new imaging technique followed by its practical application in surgical planning for better patient outcomes is an outstanding example of one of the main objectives of NIBIB-funded research.”

MRE is a special magnetic resonance imaging technique that captures snapshots of shear waves that move through the tissue and create elastograms—images that show tissue stiffness. John Huston III, M.D., Professor of Radiology at the Mayo Clinic in Rochester, MN, and senior author of the study, explains how MRE works. “MRE is similar to a drop of water hitting a still pond to create the ripples that move out in all directions. We generate tiny, harmless ripples, or shear waves, that travel through the brain of the patient. Our instruments measure how the ripples change as they move through the brain and those changes give us an extremely accurate measure–and a color-coded picture–of the stiffness of the tissue.”

MRE data enables non-invasive surgical planning

Ninety percent of PMAs are soft—nearly the consistency of toothpaste. Therefore, without MRE, surgeons would routinely plan for a procedure called transphenoidal resection that employs very thin instruments that are threaded through the nasal cavity to the pituitary gland at the base of the skull, where suction is used to remove the tumor. However, in about 10% of the cases, the surgeon will encounter a hard tumor. At that point an attempt is made to break-up the tumor—essentially chipping away at it with sharp instruments. If that is not successful, the surgeon must perform a fully-invasive craniotomy that involves removing a piece of the skull bone in order to fully expose the tumor.

The more extensive procedure means added risk and discomfort for patients, and up to a week-long recovery in the hospital compared to the transphenoidal approach that allows patients to leave the hospital in a day or two. Using MRE, hard PMAs can be identified and the more extensive craniotomy can be planned before starting the surgery, which makes the more invasive procedure less taxing for both the surgeon and patient. Similarly, MRE showing a soft PMA gives surgeons confidence that the nasal entry and removal by suction will be successful-eliminating the likelihood that the surgeon may need to perform a second fully-invasive craniotomy.

In the study of PMA reported in the January 2016 issue of the journal Pituitary, the group performed pre-surgical MRE evaluation of the PMAs of 10 patients.The MRE measurements were compared to tumor classifications made by inspection of the tumor during surgery. The surgeons categorized six tumors as soft and four tumors as medium. No tumors were deemed to be hard. The comparison of the MRE results and reports of stiffness by the surgeons when the tumor was removed and inspected were in close agreement, which was confirmed by statistical analysis.

Future plans

Although brain MRE is not yet widely available, Huston explained that the surgeons at the Mayo Clinic are now routinely using MRE to plan the best procedure for the removal of PMAs as well as several other types of brain tumor. And, even though this study of the 10 PMA patients is a very small set, Huston believes that as Mayo surgeons continue to use MRE in planning, the technique will likely begin to be adopted by other surgical centers.

Huston explained that an important aspect of some of the other brain tumor types, which the surgeons are finding extremely useful, is the ability of MRE to identify tumor adhesion to the brain. Adhesion refers to whether the brain tumor and healthy brain tissue are connected by an extensive network of blood vessels and connective tissue. This is in comparison with a tumor that is in the brain but is isolated from healthy tissue.

When MRE is used to analyze this aspect of the tumor, it clearly identifies those that are non-adhered, showing a border around the tumor through which there are no vascular connections. Conversely, MRE of adhered tumors show no border between the tumor and healthy brain, indicating extensive vascular and soft tissue connections between brain and tumor. Mutual blood vessels make removal of adherent tumors much more difficult, with a much higher chance of damage to healthy tissue and potential loss of function for the patient.

Huston and his colleagues are continuing to apply MRE, often called “palpating by imaging” to diagnosis of other brain disorders. In addition to characterizing focal brain disorders such as tumors, the group is testing the potential for MRE to provide diagnostic information about diffuse brain disease, and are currently using MRE brain stiffness patterns to identify different types of neural disorders including dementia.

This research was funded by the National Institutes of Health through the National Institute of Biomedical Imaging and Bioengineering grant EB001981.

Magnetic resonance elastography detects tumoral consistency in pituitary macroadenomas. Hughes JD, Fattahi N, Van Gompel J, Arani A, Ehman R, Huston J 3rd. Pituitary. 2016 Jun;19(3):286-92

From http://www.rdmag.com/news/2017/01/imaging-technique-measures-tumor-stiffness-aid-surgical-planning

Long-Term Obesity Persists Despite Pituitary Adenoma Treatment In Childhood

Sethi A, et al. Clin Endocrinol. 2019;doi:10.1111/CEN.14146.

January 5, 2020

Obesity is common at diagnosis of pituitary adenoma in childhood and may persist despite successful treatment, according to findings published in Clinical Endocrinology.

“The importance of childhood and adolescent obesity on noncommunicable disease in adult life is well recognized, and in this new cohort of patients, we report that obesity is common at presentation of pituitary adenoma in childhood and that successful treatment is not necessarily associated with weight loss,” Aashish Sethi, MD, MBBS, a pediatric endocrinologist in the department of endocrinology at Alder Hey Children’s Hospital in Liverpool, United Kingdom, and colleagues wrote. “We have reported obesity, and obesity-related morbidity in a mixed cohort of children and young adults previously, but [to] our knowledge, this is the first time this observation has been reported in a purely pediatric cohort.”

In a retrospective study, Sethi and colleagues analyzed clinical and radiological data from 24 white children from Alder Hey Children’s Hospital followed for a median of 3.3 years between 2000 and 2019 (17 girls; mean age at diagnosis, 15 years). Researchers assessed treatment modality (medical, surgical or radiation therapy), pituitary hormone deficiencies and BMI, as well as results of any genetic testing.

Within the cohort, 13 girls had prolactinomas (mean age, 15 years), including 10 macroadenomas between 11 mm and 35 mm in size. Children presented with menstrual disorders (91%), headache (46%), galactorrhea (46%) and obesity (38%). Nine children were treated with cabergoline alone, three also required surgery, and two were treated with the dopamine agonist cabergoline, surgery and radiotherapy.

Five children had Cushing’s disease (mean age, 14 years; two girls), including one macroadenoma. Those with Cushing’s disease presented with obesity (100%), short stature (60%) and headache (40%). Transsphenoidal resection resulted in biochemical cure; however, two patients experienced relapse 3 and 6 years after surgery, respectively, requiring radiotherapy. One patient also required bilateral adrenalectomy.

Six children had a nonfunctioning pituitary adenoma (mean age, 16 years; two girls), including two macroadenomas. These children presented with obesity (67%), visual field defects (50%) and headache (50%). Four required surgical resections, with two experiencing disease recurrence after surgery and requiring radiotherapy.

During the most recent follow-up exam, 13 children (54.1%) had obesity, including 11 who had obesity at diagnosis.

“The persistence of obesity following successful treatment, in patients with normal pituitary function, suggests that mechanisms other than pituitary hormone excess or deficiency may be important,” the researchers wrote. “It further signifies that obesity should be a part of active management in cases of pituitary adenoma from diagnosis.” – by Regina Schaffer

Disclosures: The authors report no relevant financial disclosures.

From https://www.healio.com/endocrinology/adrenal/news/online/%7Bde3fd83b-e8e0-4bea-a6c2-99eb896356ab%7D/long-term-obesity-persists-despite-pituitary-adenoma-treatment-in-childhood

Risk Comparison and Assessment Model of Deep Vein Thrombosis in Patients with Pituitary Adenomas After Surgery

Abstract

Background

Deep vein thrombosis (DVT), a major component of venous thromboembolism (VTE), is a common postoperative complication. Its occurrence after pituitary adenoma surgery is influenced by multiple factors.

Methods

This retrospective study analyzed 1440 pituitary adenoma cases treated at Beijing Tiantan Hospital (2018–2023). The incidence of postoperative DVT was recorded, and logistic regression was used to identify associated risk factors. Differences across pituitary adenoma subtypes were compared. Additionally, Regression and machine learning models were developed to predict DVT.

Results

Among 397 patients who underwent postoperative lower limb ultrasound, 104 (7.2 %) developed DVT. Significant risk factors included advanced age, higher body mass index (BMI), intravenous cannulation, prolonged hospital stay, shorter preoperative activated partial thromboplastin time (APTT), longer thrombin time (TT), elevated platelet count, and higher postoperative D-dimer levels. Patients with Cushing’s disease exhibited a significantly higher DVT incidence, potentially related to decreased pre- and postoperative APTT and PT/INR values. Conversely, patients with prolactin-secreting adenomas had a lower DVT incidence, possibly due to younger age and higher postoperative PT values. A support vector machine (SVM) model showed strong predictive performance (AUC: 0.82; accuracy: 86.08 %; specificity: 96.72 %).

Conclusion

DVT incidence varies by pituitary adenoma subtype. Machine learning enhances predictive models for postoperative DVT in pituitary adenoma patients.

Introduction

Venous thromboembolism (VTE), encompassing both deep vein thrombosis (DVT) and pulmonary embolism, is a common cardiovascular disorder. It typically presents with clinical symptoms such as lower limb swelling, chest pain, tachypnea, and, in severe cases, may result in fatal outcomes [1]. The development of VTE is influenced by three factors known as the Virchow triad: altered venous blood flow, endothelial or vessel wall damage, and hypercoagulability [2]. Surgical procedures can increase the risk of VTE, particularly DVT in the lower extremities, due to intraoperative injuries and postoperative hemodynamic changes [[3], [4], [5]]. In the absence of anticoagulant prophylaxis, the incidence of VTE following brain tumor surgery ranges from 3 % to 30 % [[6], [7], [8]]. Although pituitary adenomas are commonly considered benign cranial tumors, emerging evidence suggests that patients undergoing resection of pituitary adenomas may have a higher risk of postoperative VTE compared to those with other sellar or parasellar tumors such as craniopharyngiomas, meningiomas, or chordomas [9].
This disparity may be attributed to the unique hormone secretion functions of pituitary adenomas, as well as dysregulation of water and electrolyte balance—following surgery. Despite this, the risk factors contributing to the development of postoperative VTE in pituitary adenomas have not been extensively explored. Limited studies have identified a particularly elevated VTE risk in patients with Cushing’s disease, a hormone-secreting subtype of pituitary adenoma [10]. Given the relatively high incidence of postoperative DVT in this population, the present study aims to systematically investigate risk factors associated with lower extremity DVT after pituitary adenoma surgery. Furthermore, we seek to compare thrombotic risk across different clinical subtypes of pituitary adenomas and to construct a tailored risk prediction model to guide perioperative thromboprophylaxis in affected patients.

Johns Hopkins Pituitary Patient Education Day

October 25 @ 9:00 am – 1:00 pm

The annual Pituitary Patient Education Day is a free event that features presentations from Johns Hopkins pituitary experts.

To RSVP, please email pituitaryday@jhmi.edu. Space is limited. Each person can bring up to one guest. If you RSVP yes but you cannot make it, please inform us as soon as possible by email, so that the slot can be offered to someone else.

List of presentations will be posted when finalized. Topics covered in previous years include:

Free
1800 Orleans Street, Zayed 2117
Baltimore, Maryland 21287 United States

410-955-5000

Longterm-Outcomes In Patients With Cushing’s Disease vs. Non-Functioning Pituitary Adenoma After Pituitary Surgery: An Active-Comparator Cohort Study

Abstract

Objective

There is increasing evidence that multisystem morbidity in patients with Cushing’s disease (CD) is only partially reversible following treatment. We investigated complications from multiple organs in hospitalized patients with CD compared to patients with non-functioning pituitary adenoma (NFPA) after pituitary surgery.

Design

Population-based retrospective cohort study using data from the Swiss Federal Statistical Office between January 2012 and December 2021.

Methods

Through 1:5 propensity score matching, we compared hospitalized patients undergoing pituitary surgery for CD or NFPA, addressing demographic differences. The primary composite endpoint included all-cause mortality, major adverse cardiac events (i.e., myocardial infarction, unstable angina, heart failure, cardiac arrest, ischemic stroke), hospitalization for psychiatric disorders, sepsis, severe thromboembolic events, and fractures in need of hospitalization. Secondary endpoints comprised individual components of the primary endpoint and surgical reintervention due to disease persistence or recurrence.

Results

After matching, 116 patients with CD (mean age 45.4 years [SD, 14.4], 75.0% female) and 396 with NFPA (47.3 years [14.3], 69.7% female) were included and followed for a median time of 50.0 months (IQR 23.5, 82.0) after pituitary surgery. CD presence was associated with a higher incidence rate of the primary endpoint (40.6 vs. 15.7 events per 1,000 person-years, HR 2.75; 95% CI, 1.54 to 4.90). CD patients also showed increased hospitalization rates for psychiatric disorders (HR 3.27; 95% CI, 1.59 to 6.71) and a trend for sepsis (HR 3.15; 95% CI, 0.95 to 10.40).

Conclusions

Even after pituitary surgery, CD patients faced a higher hazard of complications, especially psychiatric hospitalizations and sepsis.

Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
© The Author(s) 2024. Published by Oxford University Press on behalf of European Society of Endocrinology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)