Adrenal Crisis

Robin wrote a great blog post about Jackie and Sam dealing with Adrenal Crisis.  This is a very important article that all should read.  Be your own advocate!

New PDF! Managing Adrenal Insufficiency

New Podcast! Podcast: Adrenal Crisis

If left untreated, adrenal insufficiency can cause serious illness or death. But by working with their doctors and nurses, patients can learn how to manage this condition.

A Paramedic wrote on the message boards:

I’d like to add a couple things from the perspective of a Paramedic…

A lot of us are not taught about adrenal insufficiency during our education….nor do many of us (if any at all) have a protocol to administer Injectable for AI unless we are able to contact the ER doctor for permission. So…if any of you should have an AI crisis please gently nudge your paramedic to contact the receiving physician for permission to administer the medication. I know this sounds like a lot of responsibility on the part of the patient…but you have to realize that we’re taught to recognize the most common life threats and endocrine disorders (other than diabetes) most usually do not present with life threats (we all know that as cushing’s is more recognized that this will change)…and our protocols cover the most common life threats….so while we may recognize that you are hypotensive and need fluids (IV) and are sweaty, nauseated, decreased level of responsiveness etc…we are not equipped to deal with the actual cause unless you help educate us….

Also…please don’t get angry with us….if we are having problems understanding…just gently insist that a call be made to your doctor or the receiving ED (usually not feasible for us to call your doctor since they do not come to the phone for just anybody but if you have access to them, as many cushies do, it would be great to talk to them)…

Paramedicine is evolving….someday soon, hopefully, our education will include more diagnostic skills…untill just in the past 5 years or so we were NEVER to make a diagnosis at all…just treat the symptoms!!!! So there is hope out there for futher understanding of such a critical problem for those without adrenal (or asleep adrenals) glands….

The medical alert jewerly is a life-saver and we do look for it….

Be sure to print this page to carry with you.

From the NIH. This information was developed by the patient care staff of the Clinical Center to help patients with adrenal insufficiency (AI) understand their condition and how to take care of it. It explains what causes adrenal insufficiency and how it can be controlled. If left untreated, adrenal insufficiency can cause serious illness or death. But by working with their doctors and nurses, patients can learn how to manage this condition.

National Endocrine and Metabolic Diseases Information Service

6 Information Way
Bethesda, MD 20892–3569
Phone: 1–888–828–0904
TTY: 1–866–569–1162
Fax: 1–703–738–4929
Email: // <![CDATA[
var prefix = 'ma' + 'il' + 'to';
var path = 'hr' + 'ef' + '=';
var addy41985 = 'endoandmeta' + '@';
addy41985 = addy41985 + 'info' + '.' + 'niddk' + '.' + 'nih' + '.' + 'gov';
var addy_text41985 = 'endoandmeta' + '@' + 'info' + '.' + 'niddk' + '.' + 'nih' + '.' + 'gov';
document.write( '‘ );
document.write( addy_text41985 );
document.write( ‘
‘ );
//n
// –>
// ]]>endoandmeta@info.niddk.nih.gov // <![CDATA[
document.write( '‘ );
// ]]>This e-mail address is being protected from spambots. You need JavaScript enabled to view it // <![CDATA[
document.write( '’ );
// ]]>

Internet: http://endocrine.niddk.nih.gov/

The National Endocrine and Metabolic Diseases Information Service is an information dissemination service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The NIDDK is part of the National Institutes of Health (NIH), which is part of the U.S. Department of Health and Human Services.

The NIDDK conducts and supports biomedical research. As a public service the NIDDK has established information services to increase knowledge and understanding about health and disease among patients, health professionals and the public.

Publications produced by the NIDDK are carefully reviewed by both NIDDK scientists and outside experts.

This publication is not copyrighted. The NIDDK encourages users of this publication to duplicate and distribute as many copies as desired.

From http://endocrine.niddk.nih.gov/pubs/creutz/alert.htm


DebMV suggested that you should have a Medic Alert bracelet from medicalert.org

Toll free number in the USA is: by phone 7 days a week, 24 hours a day: 888-633-4298
209-668-3333 from outside the U.S.


Lorrie got this important info for us.

Alternative names:

adrenal crisis; Addisonian crisis; acute adrenal insufficiency

Definition:

An abrupt, life-threatening state caused by insufficient cortisol, a hormone produced and released by the adrenal gland.

Causes, incidence, and risk factors:

The two adrenal glands are located on top of the kidneys. They consist of the outer portion, called the cortex, and the inner portion, called the medulla. The cortex produces three types of hormones, which are called corticosteroids. The androgens and estrogens affect sexual development and reproduction. The glucocorticoids maintain glucose regulation, suppress the immune response, and provide for the response to stress (cortisol). The mineralocorticoids regulate sodium and potassium balance. These hormones are essential for life.

Acute adrenal crisis is an emergency caused by decreased cortisol. The crisis may occur in a person with Addison’s disease, or as the first sign of adrenal insufficiency. More uncommonly, it may be caused by a pituitary gland disorder. It may also be caused by sudden withdrawal of corticosteroids, removal or injury of the adrenal glands, or destruction of the pituitary gland. Risk factors are stress, trauma, surgery, or infection in a person with Addison’s disease, or injury or trauma to the adrenal glands or the pituitary gland. The incidence is 4 out of 100,000 people.

Prevention:

People who have Addison’s disease should be taught to recognize signs of potential stress that may precipitate an acute adrenal crisis (cause it to occur suddenly and unexpectedly). Most people with Addison’s disease are taught to give themselves an emergency injection of hydrocortisone in times of stress. It is important for the individual with Addison’s disease to always carry a medical identification card that states the type of medication and the proper dose needed in case of an emergency. Never omit medication. If unable to retain medication due to vomiting, notify the health care provider.

Symptoms:

  • headache
  • profound weakness
  • fatigue
  • slow, sluggish, lethargic movement
  • nausea
  • vomiting
  • low blood pressure
  • dehydration
  • high fever
  • chills shaking
  • confusion or coma
  • darkening of the skin
  • rapid heart rate
  • joint pain
  • abdominal pain
  • unintentional weight loss
  • rapid respiratory rate
  • unusual and excessive sweating on face and/or palms
  • skin rash or lesion may be present
  • flank pain
  • appetite, loss

Signs and tests:

  • An ACTH (cortrosyn) stimulation test shows low cortisol.
  • The cortisol level is low.
  • The fasting blood sugar may be low.
  • The serum potassium is elevated.
  • The serum sodium is decreased.
  • This disease may also alter the results of the following tests:
    • sodium, urine
    • 17-hydroxycorticosteroids

Treatment:

In adrenal crisis, an intravenous or intramuscular injection of hydrocortisone (an injectable corticosteroid) must be given immediately. Supportive treatment of low blood pressure is usually necessary. Hospitalization is required for adequate treatment and monitoring. Low blood pressure may be treated with intravenous fluids. If infection is the cause of the crisis, antibiotic therapy is indicated.

Expectations (prognosis):

Death may occur due to overwhelming shock if early treatment is not provided.

Complications:

  • shock
  • coma
  • seizures

Helping others learn more about Cushing’s/Acromegaly

I found this article especially interesting.  This question was asked of a group of endos at an NIH conference a few years ago – if you saw someone on the street who looked like they had symptoms of fill-in-the disease, would you suggest that they see a doctor.  The general answer was no.  No surprise there.

Patients, if you see someone who looks like s/he has Cushing’s, give them a discrete card.

Spread The Word! Cushing’s Pocket Reference

Robin Writes:

This has been a concern of mine for some time. Your post spurred me on to do something I’ve been meaning to do. I’ve designed something you can print that will fit on the business cards you can buy just about anywhere (Wal-mart included). You can also print on stiff paper and cut with a paper cutter or scissors. I’ve done a front and a back.

Cushing's Pocket Reference

Here are the links:

Front: This card is being presented by a person who cares.
Back (The same for everyone)

This Topic on the Message Boards

~~~~~~~~~~~~~~~~~~

And now, the article from http://www.guardian.co.uk/lifeandstyle/2009/nov/03/doctor-diagnosis-stranger:

Are doctors ever really off duty?

Which potentially serious symptoms would prompt them to stop and advise a stranger on a bus?

By Lucy Atkins

Bus

Passengers on a London bus. Photograph: David Levene

A Spanish woman of 55, Montse Ventura, recently met the woman she refers to as her “guardian angel” on a bus in Barcelona. The stranger – an endocrinologist – urged Ventura to have tests for acromegaly, a rare disorder involving an excesss of growth hormone, caused by a pituitary gland tumour. How had the doctor made this unsolicited diagnosis on public transport? Apparently the unusual, spade-like shape of Ventura’s hands was a dead giveaway.

But how many off-duty doctors would feel compelled to alert strangers to symptoms they spot? “If I was sitting next to someone on a bus with a melanoma, I’d say something or I wouldn’t sleep at night,” says GP Mary McCullins. “We all have a different threshold for interfering and you don’t want to terrify people, but this is the one thing I’d urge a total stranger to see a doctor about.” So what other symptoms might prompt a doctor to approach someone on the street?

Moon face

Cushing’s syndrome is another rare hormone disorder which can be caused by a non-cancerous tumour in the pituitary gland. “A puffy, rounded ‘moon face’ is one of the classic signs of Cushing’s,” says Dr Steve Field, chair of the Royal College of GPs. “In a social situation, I wouldn’t just say, ‘You’re dangerously ill’ but I’d try to elicit information and encourage them to see a doctor.”

Different-sized pupils

When one pupil is smaller than the other, perhaps with a drooping eyelid, it could be Horner’s syndrome, a condition caused when a lung tumour begins eating into the nerves in the neck. This can be the first obvious sign of the cancer. “I’d encourage someone to get this checked out,” says Dr Simon Smith, consultant in emergency medicine at the Oxford Radcliffe Hospitals Trust. “People often have an inkling that something’s wrong, and you might spur them to get help sooner.”

Clubbing fingers

Some people are born with club-shaped fingers, but if, over time, they become “drumstick-like”, this could signify serious problems such as lung tumours, chronic lung infections or congenital heart disease. “Because it happens gradually, some people disregard clubbing,” says Smith. “But I’d say something because it can be an important symptom in many serious illnesses.”

Lumpy eyelids

Whitish yellowy lumps around the eyelids can be a sign of high cholesterol, a major factor in heart disease. Sometimes you also get a yellow circle around the iris. “I would suggest they got a cholesterol test with these symptoms,” says Smith. “They can do something about it that could save their life.”

Suntan in unlikely places

A person with Addison’s disease, a rare but chronic condition brought about by the failure of the adrenal glands, may develop what looks like a deep tan, even in non sun-exposed areas such as the palms. Other symptoms (tiredness, dizziness) can be non-specific so the condition is often advanced by the time it is diagnosed. Addison’s is treatable with lifelong steroid replacement therapy. “If someone was saying they hadn’t been in the sun but had developed a tan, alarm bells would ring and I’d probably ask how they were feeling,” says McCullins.

Trench mouth

Putrid smelling breath – even if the teeth look perfect – can be a sign of acute necrotising periodontitis. “I’d be able to tell when someone walks through the door,” says dentist Laurie Powell. “But people become accustomed to it and don’t notice.” Untreated, the condition damages the bones and connective tissue in the jaw. It can also be a sign of other diseases such as diabetes or Aids.

Prospective Assessment of Mood and Quality of Life in Cushing Syndrome before and after Biochemical Control

Abstract

Context

Cushing syndrome (CS) impairs quality of life (QoL) and mood. Prospective real-life data on post-treatment recovery and predictors of improvement are limited.

Objectives

Evaluate changes in QoL, depression, and anxiety in patients with CS, before and after biochemical control, and identify predictors of clinically meaningful improvement.

Design and Setting

Prospective observational study at a tertiary center.

Patients

67 patients with endogenous CS (60 pituitary, 7 adrenal) were assessed with active disease and again after achieving biochemical control through surgery and/or medication.

Outcomes

Patient-reported outcomes included CushingQoL, Beck Depression Inventory-II (BDI-II), and State-Trait Anxiety Inventory (STAI).

Results

Mean and longest follow-up was 2.3 and 11.5 years, respectively. Treatment led to improvements in mean scores across all domains (QoL: +18.2±20.9, BDI: –6.8±8.6, STAI-State: –9.6±12.5, STAI-Trait: –8.6±12.6; all p < 0.001). However, minimal important difference was achieved in 64.6% for QoL, 67.9% for BDI, 53.2% and 52.8% for STAI subscales. After multivariable analysis, QoL improvements were predicted by lower baseline BMI, pre-treatment symptoms ❤ years, post-operative hydrocortisone replacement >6 months, and normal follow-up late-night salivary cortisol (LNSC). Depression improvements were predicted by symptoms ❤ years, normal follow-up LNSC, and surgical treatment. Anxiety improvements were predicted by younger age and >6 months post-operative hydrocortisone. Depression improved more gradually than QoL and anxiety.

Conclusions

Although effective treatment improves mood and QoL in CS, clinically meaningful recovery is variable and incomplete for some patients. Our findings highlight the need to limit diagnostic delay and provide comprehensive post-treatment care that includes normalization of cortisol circadian rhythm.

Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.

This content is only available as a PDF.

© The Author(s) 2025. Published by Oxford University Press on behalf of the Endocrine Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. See the journal About page for additional terms.

Changes in Clinical Features of Adrenal Cushing Syndrome

Abstract

Adrenal Cushing syndrome (CS) has been rarely studied in recent years in Japan. This study aimed to investigate clinical characteristics and their changes over time in patients with adrenal CS. We analyzed 101 patients with adrenal CS caused by adenoma, dividing them into two groups based on diagnosis period: December 2011–November 2016 (later group, n = 50) and August 2005–November 2011 (earlier group, n = 51). Differences between the groups and comparisons with previous reports were assessed. Patients with subclinical CS were excluded. Adrenal incidentalomas were the most frequent reason for CS diagnosis (34%). Most patients exhibited few specific cushingoid features (2.5 ± 1.3), with moon faces and central obesity being the most common. Compared to earlier reports, specific cushingoid features were less frequent; nonetheless, no significant differences were observed between the earlier and later groups. All patients had midnight and post-dexamethasone suppression test serum cortisol levels exceeding 5 μg/dL. No significant differences were found between the groups regarding non-specific symptoms, endocrinological findings related to cortisol secretion, cardiometabolic commodities or infections, except for glucose intolerance and bone complications. The prevalence of metabolic disorders other than glucose intolerance and osteoporosis fluctuated over time. Sixteen patients developed cardiovascular diseases or severe infections. In conclusion, adrenal CS became less florid in the 2000s, showed no improvement in the following years, and remained associated with a high complication rate. Further research is needed to establish an early detection model for CS.

Plain language summary

Our study found that one-sixth of patients with adrenal Cushing syndrome continued to develop severe complications in this century despite their specific cushingoid features being less pronounced than in the past. Notably, the findings provide clinical insights that may aid in earlier disease diagnosis.

Introduction

Chronic exposure to excess glucocorticoids leads to Cushing syndrome (CS), with hypercortisolism causing a range of symptoms, signs and comorbidities, including arterial hypertension, diabetes mellitus, osteoporosis, severe infections and cardiovascular disease, all of which contribute to increased mortality (12345). CS also negatively impacts quality of life and cognitive function, leading to worsening socioeconomic conditions; moreover, some of these effects persist even after remission (67). Early diagnosis is therefore essential to reducing morbidity and mortality. A recent study (8) suggests that florid CS has become less common than previously reported, yet the time from symptom onset to diagnosis remains as long as 4 years (910). A similar trend toward an increase in less florid CS is expected in Japan. However, to our knowledge, no nationwide epidemiological survey of adrenal CS has been conducted in Japan in recent decades.

The number of adrenal incidentalomas (AIs) detected through abdominal imaging has been increasing (1112), potentially aiding in the early diagnosis of adrenal CS. However, in most studies from other countries, adrenal CS accounts for a smaller proportion of all CS cases compared to Japan (20–47 vs >50%, respectively), despite a rise in incidence in recent reports (1013141516). Consequently, there is limited evidence regarding diagnostic clues, clinical presentation, endocrinological findings and disease progression in a large cohort of patients with adrenal CS caused by adenomas in this century. This study aimed to examine the clinical phenotype, comorbidities and biochemical characteristics of Japanese patients with adrenal CS due to adenomas in the 2000s and to identify differences from previously reported findings.

Materials and methods

Study design and participants

This retrospective observational study was part of the Advancing Care and Pathogenesis of Intractable Adrenal Diseases in Japan (ACPA-J) study, which involved 10 referral centers (171819). The ACPA-J was established to develop a disease registry and cohort for patients with subclinical adrenal CS, adrenal CS, primary macronodular adrenal hyperplasia or adrenocortical carcinoma. The study group collected clinical, biochemical, radiological and pathological data at enrollment to generate new evidence and inform clinical guidelines. Data were obtained from patients aged 20–90 years who were diagnosed with CS due to an adrenal adenoma between August 2005 and November 2016. The dataset used in this study were validated in March 2019. The study protocol was approved by the Ethics Committee of the National Center for Global Health and Medicine (Approval No.: NCGM-S-004259) and the ethics committees of the participating centers. This study adhered to the clinical research guidelines of the Ministry of Health, Labour and Welfare, Japan (MHLWJ) and the principles of the Declaration of Helsinki. Informed consent was obtained through an opt-out option available on the websites of each referral center.

In the ACPA-J study, adrenal diseases, including CS, were initially diagnosed by attending physicians. Patients with iatrogenic CS or CS caused by primary macronodular adrenal hyperplasia or adrenocortical carcinoma were excluded. Of the 106 patients diagnosed with adrenal CS due to adenomas, five were excluded for the following reasons: baseline plasma adrenocorticotropic hormone (ACTH) ≥10 pg/mL (n = 1) or significant missing data related to the hypothalamic-pituitary-adrenal axis (n = 4). None of the patients met the criteria for subclinical CS according to the Japan Endocrine Society clinical practice guidelines (20). Except for three cases, adrenal adenomas were pathologically confirmed through surgical specimens. In patients who did not undergo surgery, a tumor was classified as an adenoma if it appeared round or oval, hypodense (i.e., ≤10 Hounsfield units), homogeneous and well-defined on computed tomography (12). As a result, the final analysis included 101 patients with adrenal CS due to adrenal adenomas (Fig. 1).

Figure 1View Full Size
Figure 1

Flowchart of patient selection. ACTH, adrenocorticotropic hormone; UFC, urinary free cortisol.

Citation: Endocrine Connections 14, 5; 10.1530/EC-24-0684

The diagnosis of adrenal CS was validated based on the diagnostic criteria established by the Research on Intractable Diseases, Research Committee on Disorders of Adrenal Hormones from the MHLWJ in 2016 (21). These criteria included a combination of the following: the presence of specific and non-specific cushingoid features, confirmation of cortisol hypersecretion through elevated morning serum cortisol levels (generally ≥20 μg/dL) and/or high 24 h urinary free cortisol (UFC; typically more than four times the upper limit of normal (ULN) for the assay used at each center), disruption of the circadian rhythm in serum cortisol levels (serum cortisol at 21:00–23:00 h ≥5 μg/dL), suppression of ACTH secretion (morning plasma ACTH <10 pg/mL and/or a blunted response to corticotropin-releasing hormone (CRH) stimulation, defined as either an increase of <1.5 times the baseline ACTH or peak ACTH <10 pg/mL), failure to suppress serum cortisol levels (≥5 μg/dL) after the standard overnight 1 mg and/or 8 mg dexamethasone suppression test (DST), and the presence of an adrenal tumor on imaging.

Measurements

The collected data included patient demographics such as age at diagnosis, sex, body mass index (BMI) and the reason for diagnosing CS. Specific cushingoid features recorded were moon face, dorsocervical or subclavian fat pad, central obesity, easy bruising, thin skin, muscle weakness, purple striae and facial plethora. Non-specific cushingoid features included acne, virilism or hirsutism in women, psychiatric disorders, menstrual irregularity and leg edema. Biochemical and hormonal profiles were assessed, including hemoglobin A1c (HbA1c), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), morning and midnight serum cortisol, serum cortisol after the 1 mg or 8 mg DST, plasma ACTH before and after CRH stimulation, 24 h UFC and plasma dehydroepiandrosterone sulfate (DHEA-S). Comorbidities examined included hypertension, impaired glucose tolerance, dyslipidemia, obesity, bone fracture, osteoporosis, venous thromboembolism, cerebral infarction, cerebral hemorrhage, angina pectoris, myocardial infarction, heart failure, pneumonia, sepsis, deep abscess and other infections. Adrenal tumor diameter was assessed using imaging. To systematically assess various measurements, including specific and non-specific cushingoid features in patients with adrenal CS, we predefined survey items before initiating the study. We did not predefine the period for the major adverse cardiovascular and cerebrovascular events (MACCEs) and serious infections. The diseases were registered only if attending physicians determined they were associated with hypercortisolism. Missing data were excluded from the analysis. UFC and serum cortisol levels were partially expressed as multiples of the ULN or lower limit of normal (LLN) due to changes in assay methods. Further details on assay methods are provided in the supplementary data (see section on Supplementary materials given at the end of the article).

Hypertension was defined as a blood pressure of ≥140/90 mmHg or the use of antihypertensive medication (22). Due to inconsistencies in registration data, prediabetes and type 2 diabetes have been classified together under impaired glucose tolerance. Impaired glucose tolerance was defined as a fasting plasma glucose level of ≥110 mg/dL, a 2 h plasma glucose level of ≥140 mg/dL after a 75 g oral glucose load, an HbA1c level of ≥6.2% or current antidiabetic therapy (23). Dyslipidemia was defined by LDL-C levels ≥140 mg/dL, HDL-C levels <40 mg/dL, TG levels ≥150 mg/dL or the use of lipid-lowering therapy (24). Obesity was classified as a BMI ≥25 kg/m2, following the criteria of the Japan Society for the Study of Obesity (25). Osteoporosis was diagnosed based on a T-score ≤−2.5 standard deviation (SD) on dual-energy X-ray absorptiometry, in accordance with World Health Organization criteria (26). The presence of other symptoms, signs or comorbidities beyond the listed conditions was determined by the attending physicians based on medical records. The prevalence of MACCEs was also calculated. The CRH loading test is used to assess ACTH suppression in patients with suspected ACTH-independent hypercortisolism (20). A normal ACTH response to CRH stimulation was defined as plasma ACTH levels exceeding 10 pg/mL and increasing by more than 50% from baseline.

Classification of participants according to the date of diagnosis

The primary objective of this study was to examine temporal changes in the clinical presentation of adrenal CS, necessitating classification based on the date of diagnosis. We also sought to clarify recent trends in CS diagnosis. The most recent diagnosis among study participants was recorded in November 2016. To analyze changes in clinical presentation over 10 years, we classified patients into two groups: those diagnosed within 5 years of the most recent case (i.e., December 2011–November 2016, later group; n = 50) or those diagnosed earlier (i.e., August 2005–November 2011, earlier group; n = 51).

Changes in the clinical pictures over time

To examine changes in the clinical picture over time, we compared the prevalence of symptoms, signs and comorbidities in this study with findings from a nationwide survey conducted by the Research on Intractable Diseases, Research Committee on Disorders of Adrenal Hormones under the MHLWJ in 1997 (16) and data from traditional reports compiled by Rosset et al. (8). The nationwide survey was conducted in 1997 and 1998 using questionnaires sent to 4,060 departments. It included 737 patients with CS, covering adrenal CS caused by adenoma and bilateral hyperplasia, pituitary CS and ectopic ACTH syndrome, with adrenal CS accounting for 47.1% of cases. While the later research did not provide details on patient numbers, study duration or data collection methods, the data sources were clearly stated.

Statistical analysis

Statistical analyses were conducted using SPSS (version 26.0; IBM Corp., USA) or EZR (Saitama Medical Center, Jichi Medical University, Japan) (27). Results are expressed as means ± SDs and frequencies (positive/total observations) unless otherwise specified. Data distributions were assessed using the Kolmogorov–Smirnov test. Quantitative variables were compared between groups using the Student’s t-test, while the categorical variables were analyzed using the χ 2 test or Fisher’s exact test. We used a single-sample binomial test to compare our variable frequencies with those in previous studies (8). Statistical significance was defined as a P-value of <0.05.

Results

Clinical characteristics

This study included 101 patients with adrenal CS, with a higher prevalence in women than men. The average age of participants was 46.9 ± 13.3 years, with only 20% aged over 60 (Table 1). Notably, AIs were the most frequent finding leading to a CS diagnosis, followed by hypertension. Specific cushingoid features, such as moon face and muscle weakness, prompted diagnosis in approximately 15% of cases. The mean maximum diameter of the adenomas was approximately 3 cm. More than 90% of patients (94/101) had adrenal adenomas >2 cm. Bilateral adenomas were observed in nearly 20% of the study population. No significant differences were observed between the earlier and later groups regarding age, sex distribution, diagnostic triggers (except fractures), adenoma size or the prevalence of bilateral adenomas.

Table 1Clinical characteristics of patients with Cushing syndrome.

All patients with Cushing syndrome Earlier group Later group P-value
n = 101 n = 51 n = 50
Age, years 46.9 (13.3) 45.9 (13.3) 47.8 (13.4) 0.459
20–39/40–59/>60, n (%) 30/50/20 (30.0%/50.0%/20.0%) 19/21/10 (38.0%/42.0%/20.0%) 11/29/10 (22.0%/58.0%/20.0%) 0.181
Female, n (%) 90/100 (90.0%) 45/50 (90.0%) 45/50 (90.0%) 0.999
BMI, kg/m2 24.6 (4.3) 24.9 (4.3) 24.4 (4.2) 0.545
Reasons leading to Cushing syndrome diagnosis
 Incidentaloma, n (%) 34/101 (33.7%) 17/51 (33.3%) 17/50 (34.0%) 0.999
 Hypertension, n (%) 30/101 (29.7%) 16/51 (31.4%) 14/50 (28.0%) 0.828
 Moon face, n (%) 11/101 (10.9%) 8/51 (15.7%) 3/50 (6.0%) 0.2
 Weight gain, n (%) 10/101 (9.9%) 4/51 (7.8%) 6/50 (12.0%) 0.525
 Edema, n (%) 10/101 (9.9%) 5/51 (9.8%) 5/50 (10.0%) 0.999
 Fracture, n (%) 8/101 (7.9%) 1/51 (2.0%) 7/50 (14.0%) 0.031
 Muscle weakness, n (%) 4/101 (4.0%) 3/51 (5.9%) 1/50 (2.0%) 0.617
Bilateral adrenal tumors, n (%) 17/101 (16.8%) 11/51 (21.6%) 6/50 (12.0%) 0.308
Maximum diameter of tumor (mm) 28.4 (7.6) 27.2 (7.2) 29.6 (7.9) 0.111
≥20 mm, n (%) 94 (94.0%) 47 (92.2%) 47 (95.9%) 0.678

Data are presented as mean (SD) or number of patients (%). Patients were categorized into two groups based on their diagnosis date: within 5 years of the most recent case (December 2011–November 2016, later group) or earlier (August 2005–November 2011, earlier group).

P-values were calculated using Student’s t-test. Proportions between the before and after groups were compared using the X 2 or Fisher’s exact tests.

BMI, body mass index.

Specific and non-specific cushingoid features

Most patients with CS exhibited a limited number of specific features (mean ± SD, 2.5 ± 1.3) (Table 2). Nearly 40% of patients had two or fewer specific cushingoid features, while only 5% had five or more. The most frequently observed feature was moon face, followed by central obesity with a dorsocervical or subclavian fat pad, easy bruising or thin skin, facial plethora and muscle weakness or purple striae. The two most common features were present in over 50% of patients. Non-specific cushingoid features, including menstrual irregularity, acne, psychiatric disorders, hirsutism, virilization in women and edema, were observed in fewer than 25% of cases. The mean number of non-specific features was approximately one (0.6 ± 0.7). No significant differences in symptoms and signs of CS were found between the earlier and later groups.

Table 2Presence of specific and non-specific cushingoid features.

All patients with Cushing syndrome Earlier group Later group P-value
Cushingoid appearance, n (%) 99/101 (98.0%) 51/51 (100%) 48/50 (96.0%) 0.243
Specific features
 (1) moon face, n (%) 85/101 (84.2%) 41/51 (80.4%) 44/50 (88.0%) 0.439
 (2) central obesity, n (%) 60/101 (59.4%) 32/51 (62.7%) 28/50 (56.0%) 0.626
 (3) easy bruising or thin skin, n (%) 45/101 (44.6%) 19/51 (37.3%) 26/50 (52.0%) 0.163
 (4) facial plethora, n (%) 25/101 (24.8%) 10/51 (19.6%) 15/50 (30.0%) 0.327
 (5) muscle weakness, n (%) 21/101 (20.8%) 10/51 (19.6%) 11/50 (22.0%) 0.959
 (6) purple striae, n (%) 21/101 (20.8%) 14/51 (27.5%) 7/50 (14.0%) 0.156
Non-specific features
 (7) menstrual irregularity, n (%) 20/79 (25.3%) 10/37 (27.0%) 10/42 (23.8%) 0.945
 (8) acne, n (%) 15/101 (14.9%) 8/51 (15.7%) 7/50 (14.0%) 0.999
 (9) psychiatric disorders, n (%) 13/101 (12.9%) 7/51 (13.7%) 6/50 (12.0%) 0.999
 (10) hirsutism or virilization in female, n (%) 9/85 (10.6%) 6/41 (14.6%) 3/44 (6.8%) 0.303
 (11) leg edema, n (%) 4/101 (4.0%) 4/51 (7.8%) 0/50 (0.0%) 0.118
Number of items
In specific features ((1)–(6)), mean (SD) 2.5 (1.3) 2.5 (1.2) 2.6 (1.4) 0.562
In non-specific features ((7)–(11)), mean (SD) 0.6 (0.7) 0.7 (0.8) 0.5 (0.7) 0.258

Data are presented as mean (SD) or number of patients (frequency). Patients were categorized into two groups based on their diagnosis date: within 5 years of the most recent case (December 2011–November 2016, later group) or earlier (August 2005–November 2011, earlier group).

P-values were calculated using Student’s t-test. Proportions between the before and after groups were compared using the X 2 or Fisher’s exact tests.

Endocrinological findings

Serum cortisol levels after the 1 mg or 8 mg DST and midnight serum cortisol levels exceeded 5.0 μg/dL in all participants who underwent these tests (Table 3). In addition, all patients had markedly low baseline plasma ACTH levels. More than 50% of patients had morning serum cortisol levels below the ULN, while over 25% had UFC levels below this threshold (Fig. 2). Absolute serum cortisol concentrations (μg/dL) following the 8 mg DST were higher in the earlier group than in the latter group. However, when expressed as multiples of the LLN, there was no difference between groups, suggesting that this discrepancy was due to variations in assay methods. In contrast, baseline plasma ACTH levels were higher in the earlier group than in the latter group. Other parameters related to the hypothalamic-pituitary-adrenal axis, such as morning, midnight and post-DST serum cortisol levels, UFC levels, serum DHEA-S levels and plasma ACTH levels after CRH stimulation, were comparable between groups. The CRH stimulation test was performed in about 33% of participants. All but one patient had peak plasma ACTH levels below 10 pg/mL after CRH loading.

Table 3Endocrinological findings.

All patients with Cushing syndrome Earlier group Later group P-value
n = 101 n = 51 n = 50
Morning serum cortisol levels (n = 100) μg/dL 17.7 (5.7) 18.4 (4.8) 17.0 (6.5) 0.232
× the ULN times 0.90 (0.3) 0.96 (0.3) 0.88 (0.4) 0.264
Midnight serum cortisol levels (n = 97) μg/dL 17.6 (5.3) 18.6 (4.7) 16.7 (5.8) 0.088
≥5 μg/dL n (%) 97/97 (100%) 48/48 (100%) 49/49 (100%) N/A
× the lower limit of normal times 3.2 (1.3) 3.2 (1.3) 3.2 (1.3) 0.846
Plasma ACTH levels in the morning (n = 100) pg/mL 1.9 (1.7) 2.6 (2.0) 1.2 (0.9) <0.001
<10 pg/mL n (%) 100/100 (100%) 50/50 (100%) 50/50 (100%) N/A
DHEA-S (n = 97) μg/dL 40.7 (50.6) 35.2 (34.3) 45.8 (61.8) 0.313
Urinary free cortisol (n = 91) mg/24 h 283.1 (329.8) 279.8 (273.2) 285.8 (372.5) 0.932
× the ULN times 3.5 (4.1) 3.5 (3.4) 3.6 (4.6) 0.928
Serum cortisol levels after 1 mg DST (n = 96) μg/dL 18.6 (5.4) 19.3 (4.4) 17.9 (6.2) 0.202
≥5 μg/dL n (%) 96/96 (100%) 48/48 (100%) 48/48 (100%) N/A
× the LLN times 3.4 (1.4) 3.3 (1.3) 3.5 (1.4) 0.566
Serum cortisol levels after 8 mg DST (n = 71) μg/dL 18.6 (5.2) 19.9 (5.2) 17.0 (5.0) 0.017
≥5 μg/dL n (%) 71/71 (100%) 38/38 (100%) 33/33 (100%) N/A
× the LLN times 3.4 (1.3) 3.5 (1.5) 3.4 (1.2) 0.775
Peak plasma ACTH value after CRH stimulation test (n = 36) pg/mL 3.4 (3.4) 3.9 (1.5) 2.9 (4.3) 0.413

Data are presented as mean (SD) or number of patients (%). Patients were categorized into two groups based on their diagnosis date: within 5 years of the most recent case (Dec 2011–Nov 2016, later group) or earlier (Aug 2005–Nov 2011, earlier group).

P-values were calculated using Student’s t-test. Proportions between the before and after groups were compared using the X 2 or Fisher’s exact tests.

ACTH, adrenocorticotropic hormone; CRH, corticotropin-releasing hormone; DHEA-S, dehydroepiandrosterone sulfate; DST, dexamethasone suppression test; N/A, not available; LLN, lower limit of normal; ULN, upper limit of normal.

Figure 2View Full Size
Figure 2

Distribution of the ratio of morning serum (left) cortisol and (right) urinary free cortisol levels to the upper limit of normal (ULN).

Citation: Endocrine Connections 14, 5; 10.1530/EC-24-0684

Comorbidities

Among cardiometabolic conditions, hypertension was the most prevalent comorbidity (79.2%), followed by dyslipidemia, bone disorders, obesity and glucose intolerance (Table 4). The incidence of venous thromboembolism was 4.2%. Apart from all fractures or osteoporosis, no significant differences in complication rates were observed between the groups. Table 5 presents the frequency of MACCEs and severe infections among participants. Thirteen MACCEs (10.9%), including cerebral infarction or hemorrhage, angina pectoris, myocardial infarction and heart failure, were reported in 11 patients. In addition, six patients (6.0%) developed severe infections, such as pneumonia, sepsis or deep abscesses. Overall, 16 (15.8%) patients experienced serious illnesses. The prevalence of these conditions did not differ significantly between the earlier and later groups.

Table 4Comorbidities in patients with Cushing syndrome.

All patients with Cushing syndrome Earlier group Later group P-value
n = 101 n = 51 n = 50
Cardiometabolic
 Hypertension, n (%) 80/101 (79.2%) 42/51 (82.4%) 38/50 (76.0%) 0.588
 Dyslipidemia, n (%) 61/99 (61.6%) 32/50 (64.0%) 29/49 (59.2%) 0.775
 Obesity (BMI ≥25 kg/m2), n (%) 39/96 (40.6%) 23/48 (47.9%) 16/48 (33.3%) 0.212
 Impaired glucose tolerance, n (%) 33/101 (32.7%) 17/51 (33.3%) 16/50 (32.0%) 1
Bone
 All fractures, n (%) 25/93 (26.9%) 9/45 (20.0%) 16/48 (33.3%) 0.224
 Osteoporosis, n (%) 42/90 (46.7%) 17/42 (40.5%) 25/48 (52.1%) 0.374
 All fractures or osteoporosis, n (%) 48/101 (47.5%) 18/51 (35.3%) 30/50 (60.0%) 0.017
Coagulopathy
 Venous thromboembolism, n (%) 4/96 (4.2%) 3/50 (6.0%) 1/46 (2.2%) 0.670

Patients were categorized into two groups based on their diagnosis date: within 5 years of the most recent case (December 2011–November 2016, later group) or earlier (August 2005–November 2011, earlier group). BMI, body mass index.

Table 5Number of cardiovascular disease and infection events.

All patients with Cushing syndrome Earlier group Later group P-value
n = 101 n = 51 n = 50
MACCEs, n (%) 11/101 (10.9%) 6/51 (11.8%) 5/50 (10%) 1
 Cerebral infarction, n (%) 2/101 (2.0%) 1/51 (2.0%) 1/50 (2.0%) 1
 Cerebral hemorrhage, n (%) 0/101 (0%) 0/51 (0%) 0/50 (0%) N/A
 Angina pectoris, n (%) 2/101 (2.0%) 2/51 (3.9%) 0/50 (0%) 0.484
 Myocardial infarction, n (%) 2/101 (2.0%) 1/51 (2.0%) 1/50 (2.0%) 1
 Heart failure, n (%) 7/101 (6.9%) 4/51 (7.8%) 3/50 (6.0%) 1
Severe infection, n (%) 6/101 (6.0%) 4/51 (7.8%) 2/50 (4.1%) 0.678
 Pneumonia, n (%) 2/101 (2.0%) 1/51 (2.0%) 1/50 (2.0%) 1
 Deep abscess, n (%) 2/101 (2.0%) 1/51 (2.0%) 1/50 (2.0%) 1
 Sepsis, n (%) 1/101 (1.0%) 1/51 (2.0%) 0/50 (0%) 1
 Other infections, n (%) 1/101 (1.0%) 1/51 (2.0%) 0/50 (0%) 1

Patients were categorized into two groups based on their diagnosis date: within 5 years of the most recent case (December 2011–November 2016, later group) or earlier (August 2005–November 2011, earlier group). MACCEs, major adverse cardiovascular and cerebrovascular events; N/A, not available.

Changes in the clinical presentation over time

To assess temporal changes in the clinical presentation, we compared the prevalence of symptoms, signs and comorbidities in this study with data from a nationwide survey conducted by the MHLWJ in 1997 (16) and traditional reports compiled by Rosset et al. (8) (Supplementary Table 1). The frequency of specific cushingoid features, except for moon face, and non-specific cushingoid features, such as diabetes mellitus, menstrual irregularities, obesity and dyslipidemia, was significantly lower in our cohort compared with previous reports. The trends in hypertension, depression and osteoporosis varied by region. In addition, significant differences in the prevalence of easy bruising, hypertension and osteoporosis were observed between the earlier and later groups.

Discussion

This multicenter study in Japan demonstrated that fully developed adrenal CS has been identified less frequently in the twenty-first century compared with the previous century, and clinical outcomes did not improve during the 2000s. One possible reason for the increased detection of less florid CS is the higher likelihood of encountering AIs, as AIs discovery led to CS diagnosis in approximately 33% of the study cohort. Similar trends have been observed in West and North Africa (10141516). In addition, Braun et al. (28) reported that the presence of AIs independently increased the likelihood of a CS diagnosis. However, the incidence of AIs far exceeds that of CS (1112). Given that the Endocrine Society’s practice guidelines for CS (29) advise against widespread testing for all suspected cases, additional information is needed to enhance the pretest probability for detecting CS. In this study, only one patient (1/100, 1%) was male with an adrenal tumor smaller than 2.0 cm (7/101, 6.0%), suggesting that clinical evaluation can significantly reduce the likelihood of CS.

To assess the impact of AIs on early CS detection, we categorized adrenal CS patients into two groups based on whether their diagnosis resulted from AIs (n = 34) or not (n = 67). The mean number of specific cushingoid features was comparable between the two groups (2.3 ± 1.4 vs 2.7 ± 1.2, P = 0.119, data not shown). Similar trends were observed in non-specific cushingoid features, endocrinological findings, comorbidities and MAACEs. Conversely, when categorized based on having fewer than two specific cushingoid features (n = 21) versus two or more (n = 80), the detection rate of AIs tended to be higher, and serum cortisol levels at midnight or after a 1 mg DST were lower in those with fewer features than in those with more pronounced features (52.4 vs 28.7%, P = 0.067; 15.4 ± 4.4 μg/dL vs 18.2 ± 5.4 μg/dL, P = 0.031; and 16.3 ± 5.0 μg/dL vs 19.1 ± 5.3 μg/dL, P = 0.03, respectively, data not shown). Furthermore, the Cochran–Armitage test indicated that the trend across the diagnosis rate of CS leading to AIs rose with an increasing number of positive findings of specific cushingoid features (P = 0.035, data not shown). These findings suggest that while AIs may aid in identifying patients with less florid CS, they are unlikely to contribute to earlier diagnosis.

Cushingoid features can be categorized as specific or non-specific. Specific features help differentiate patients with severe CS from those without CS or those with cardiometabolic disorders or AIs with mild autonomous cortisol secretion (30). In this study, a moon face was observed in over 80% of participants, making it the most prevalent specific cushingoid feature. This suggests that a moon face may appear early and/or serve as the first distinct sign in most CS cases. Therefore, when evaluating patients at risk for CS, physicians should compare past and current photographs to facilitate early diagnosis. The development of advanced facial recognition software capable of detecting facial changes over time could further aid in preventing missed diagnoses of CS (3132). In addition, central obesity, defined by a dorsocervical and/or subclavian fat pad, was present in over 50% of CS cases, whereas obesity based on BMI criteria was observed in approximately 40% (24). The rising global prevalence of overweight and obesity complicates the diagnosis of CS. However, general obesity may negatively impact CS prediction (33). Our findings suggest that body shape, fat distribution – including the presence of a distinct fad pad – and facial contour are more relevant than body weight in distinguishing CS from general obesity. This distinction may help reduce unnecessary testing for CS.

Consistent with previous studies (3334), cardiometabolic conditions such as metabolic syndrome and bone comorbidities (i.e., osteoporosis and fractures) were frequently observed in patients with CS. However, as noted earlier, the prevalence of AIs with mild cortisol hypersecretion is significantly higher than that of CS, and non-specific cortisol-related cardiometabolic comorbidities are also common in AIs (34). Because these conditions are prevalent in the general population, broad screening has not been endorsed, as some non-specific features (e.g., hypertension, obesity and glucose intolerance) are more likely to indicate non-CS (35). Therefore, as recommended by clinical guidelines (29), additional factors – such as comorbidities that develop atypically with age, worsen over time or appear sequentially – should be considered before initiating screening. Moreover, in this study, 19 MACCEs or severe infections requiring hospitalization were reported in 16 patients (15.8%). This underscores the fact that, even in the 2000s, delays in diagnosing adrenal CS persist, necessitating improvements to reduce complications. Similarly, Rubinstein et al. (10) found no evidence of earlier CS diagnosis in patients treated after 2000 compared to studies conducted before 2000.

Our study revealed four notable findings in the endocrinological data. First, we confirm that CS should not be ruled out even if morning serum cortisol levels are normal, as this was observed in 66% of our patients. Endocrinologists must inform general practitioners to prevent missed diagnoses of CS. Second, post-1 mg DST serum cortisol levels in our cohort were much higher than the 1.8 μg/dL (50 nmol/L) cutoff recommended by the Endocrine Society Practical Guideline (29), consistently exceeding 5.0 μg/dL (138 nmol/L). Ceccato et al. (33) suggested a new threshold of 7.1 μg/dL (196 nmol/L) to distinguish CS from AIs without CS and 2.4 μg/dL (66 nmol/L) to differentiate CS from non-CS. We considered adjusting DST cutoffs based on the patient’s circumstances (e.g., the presence or absence of AIs or specific cushingoid features). Recent guidelines state that cortisol autonomy exists on a biological continuum, without a distinct separation between nonfunctioning and functioning adenomas with varying degrees of cortisol excess (12). Any post-DST cortisol cutoff value generally demonstrates poor accuracy in predicting prevalent comorbidities in patients with AIs. However, this finding applies to patients without overt CS, as the risk of developing CS is very low in the absence of clinical signs at the initial assessment. Furthermore, adrenal adenomas associated with overt CS have shown a distinct mutation profile compared to those with mild autonomous cortisol secretion (36). These results suggest that the two types of adenomas should be distinguished. Our data indicate that if serum cortisol levels after DST are significantly higher than the current cutoff value (i.e., 1.8 μg/dL), physicians should carefully assess patients for specific cushingoid features. A large-scale nationwide study in Japan, including adrenal CS, AIs with autonomous cortisol secretion, and non-CS, is needed to determine the optimal serum cortisol level cutoff after a DST for diagnosing adrenal CS in the Japanese population.

Third, normal UFC levels were found in 25% of participants despite elevated serum cortisol levels after the DST or at midnight in all patients. Several factors such as urinary volume, adherence to proper urine collection, day-to-day variability, and the number of measurements can affect UFC levels (37). To assess the impact of renal function on these results, we analyzed the estimated glomerular filtration rate (eGFR) in patients with normal UFC levels. The mean UFC levels were lower in patients with an eGFR <60 mL/min/m2 (n = 22) than in those with an eGFR ≥60 mL/min/m2 (n = 68) (1.0 ± 0.8 × ULN vs 4.0 ± 4.3 × ULN, P = 0.016), suggesting that renal impairment partially contributed to the discrepancies. Unfortunately, other factors affecting the results were not available in our data. Finally, all but one patient (97.3%) had peak plasma ACTH levels <10 pg/mL after CRH stimulation. This test may yield pseudo-positive results, as the exceptional patient had five specific cushingoid features along with typical autonomous cortisol secretion in CS (e.g., serum cortisol levels at midnight and after 1 mg DST near 20 μg/dL). Thus, the CRH stimulation test may not provide additional information for most patients with adrenal CS exhibiting clear ACTH suppression.

This study has several limitations, primarily due to its retrospective, cross-sectional design. First, selection bias may have occurred due to differences in data handling across participating centers, endocrine tests related to CS, or assay methods for CS-related comorbidities. Second, there were varying numbers of patients available for each measurement. Third, the absence of a predefined diagnostic protocol for CS and its comorbidities may have contributed to inconsistencies in diagnosis. Fourth, comparisons were challenging due to the wide variability in assay methods. Fifth, a 5-year period may be insufficient to evaluate changes in the clinical presentation of CS over time. Finally, as the study was conducted solely in Japan and primarily referenced Japanese CS and/or subclinical CS clinical guidelines (2021), its findings may not be generalizable. However, a key strength of this study is its involvement of multiple centers and a larger sample size compared to previous studies.

In conclusion, cases of adrenal CS in the 2000s were less florid than in previous decades although no further clinical improvement was observed during this century. A new model for the early detection of CS is necessary, as the prevalence of CS-related complications remains high. To reduce the time to diagnosis of adrenal CS, it is important to avoid overlooking moon face and central obesity with dorsocervical and/or subclavian fat pad, assess morning ACTH and serum cortisol after a DST with higher cutoff values than those recommended by the Endocrine Society, use abdominal computed tomography, and consider tumor size and patient sex when evaluating patients with suspected CS. Additional studies are needed to create a more effective diagnostic method for earlier identification of CS.

Supplementary materials

This is linked to the online version of the paper at https://doi.org/10.1530/EC-24-0684.

Declaration of interest

The authors declare that there are no conflicts of interest that could be perceived as affecting the impartiality of the research presented.

Funding

This research was supported by the National Center for Global Health and Medicine, Japan (grant numbers 21A1015, 24A1004), the MHLWJ (grant number Nanbyo-Ippan-23FC1041) and AMED, Japan (grant numbers JP17ek010922, JP20ek0109352).

Author contribution statement

Takuyuki Katabami (conceptualization (lead), methodology (lead), validation (equal), visualization (lead), writing–original draft (lead), writing–review and editing (equal)), Shiko Asai (data curation (lead), formal analysis (lead), investigation (equal), software (equal), visualization (equal), writing–review and editing (equal)), Ren Matsuba (data curation (equal), formal analysis (lead), investigation (equal), software (equal), visualization (equal), writing–review and editing (equal)), Masakatsu Sone (data curation (equal), investigation (supporting), writing–review and editing (supporting)), Shoichiro Izawa (data curation (equal), investigation (supporting), writing–review and editing (supporting)), Takamasa Ichijo (data curation (equal), investigation (supporting), writing–review and editing (supporting)), Mika Tsuiki (data curation (equal), investigation (supporting), writing–review and editing (supporting)), Shintaro Okamura (data curation (equal), investigation (supporting), writing–review and editing (supporting)), Takanobu Yoshimoto (data curation (equal), investigation (supporting), writing–review and editing (supporting)), Michio Otsuki (data curation (equal), investigation (supporting), writing–review and editing (supporting)), Yoshiyu Takeda (data curation (equal), investigation (supporting), writing–review and editing (supporting)), Mitsuhide Naruse (data curation (equal), project administration (equal), supervision (lead), validation (lead), writing–review and editing (lead)), Akiyo Tanabe (data curation (equal), funding acquisition (lead), project administration (equal), resource (lead), supervision (lead), validation (lead), writing–review and editing (lead)), ACPA-J Study Group (data curation (equal), investigation (supporting), writing–review and editing (supporting)).

Data availability

The data supporting this article cannot be shared publicly due to restrictions imposed by the authors’ institutes. Data can be made available upon reasonable request to the corresponding author.

Acknowledgments

We acknowledge the contributions of the ACPA-J Study Group members, including Daisuke Taura (Kyoto University), Mukai Kosuke (Osaka University), Shigeatsu Hashimoto (Fukushima Medical University Aizu Medical Center), Masanori Murakami (Tokyo Medical and Dental University), Norio Wada (Sapporo City General Hospital), Mai Asano (Kyoto Prefectural University), Yutaka Takahashi (Nara Medical University), Hidenori Fukuoka (Nara Medical University) and Tomoko Suzuki (International University of Health and Welfare).

References

Osilodrostat Treatment for Adrenal and Ectopic Cushing Syndrome

Integration of Clinical Studies With Case Presentations

Maria Fleseriu, Richard J Auchus, Irina Bancos, Beverly MK Biller
Journal of the Endocrine Society, Volume 9, Issue 4, April 2025, bvaf027
https://doi.org/10.1210/jendso/bvaf027

Abstract

Although most cases of endogenous Cushing syndrome are caused by a pituitary adenoma (Cushing disease), approximately one-third of patients present with ectopic or adrenal causes.

Surgery is the first-line treatment for most patients with Cushing syndrome; however, medical therapy is an important management option for those who are not eligible for, refuse, or do not respond to surgery.

Clinical experience demonstrating that osilodrostat, an oral 11β-hydroxylase inhibitor, is effective and well tolerated comes predominantly from phase III trials in patients with Cushing disease. Nonetheless, reports of its use in patients with ectopic or adrenal Cushing syndrome are increasing. These data highlight the importance of selecting the most appropriate starting dose and titration frequency while monitoring for adverse events, including those related to hypocortisolism and prolongation of the QT interval, to optimize treatment outcomes. Here we use illustrative case studies to discuss practical considerations for the management of patients with ectopic or adrenal Cushing syndrome and review published data on the use of osilodrostat in these patients.

The case studies show that to achieve the goal of reducing cortisol levels in all etiologies of Cushing syndrome, management should be individualized according to each patient’s disease severity, comorbidities, performance status, and response to treatment. This approach to osilodrostat treatment maximizes the benefits of effective cortisol control, leads to improvements in comorbid conditions, and may ameliorate quality of life for patients across all types and severities of Cushing syndrome.

Read the article

 

From https://www.endocrine.org/journals/journal-of-the-endocrine-society/osilodrostat-treatment-for-adrenal-and-ectopic-cushing-syndrome